PENGENALAN POLA KARAKTER PLAT NOMOR KENDARAAN MENGGUNAKAN ALGORITMA MOMENTUM BACKPROPAGATION NEURAL NETWORK
Abstract
Peningkatan jumlah kendaraan bermotor yang terus terjadi di Indonesia tiap tahunnya, membuat kebutuhan akan sistem yang mampu mengidentifikasi kendaraan secara otomatis atau sering disebut Sistem Lalu Lintas Cerdas juga ikut meningkat.Sistem ini dapat digunakan antara lain untuk menemukan kendaraan yang dicuri, pembayaran tiket parkir otomatis, dan menindak para pelanggar lampu merah. Kemampuan utama dari sistem tersebut adalah pengenalan plat nomor.Pada penelitian kali ini akan digunakan metode Momentum Backpropagation Neural Network untuk mengenali karakter dari suatu citra plat nomor kendaraan di Indonesia. Namun sebelumnya, citra plat nomor akan diubah menjadi citra biner. Citra biner kemudian disegmentasi untuk mengisolasi karakter-karakter yang akan dikenali. Terakhir dimensi citra hasil segmentasi akan direduksi menggunakan Haar Wavelet.Uji coba pada penelitian kali ini melibatkan 276 karakter yang terdiri dari huruf dan angka pada plat nomor kendaraan di Indonesia. Hasil uji coba menunjukkan 268 karakter diantaranya mampu dikenali dengan benar. Dengan kata lain metode yang digunakan memiliki tingkat akurasi hingga 97,10%.
References
In National Workshop-Cum-Conference on Recent Trends in Mathematics and Computing. India. 2011.
Bhushan, B., Singh, S. and Singla, R., 2013. License Plate Recognition System using NeuralNetworks and Multithresholding Technique.International Journal of Computer Applications, 84(5), pp.45-50.
Ganapathy, V. andLui, W.L.D., 2008. A Malaysian Vehicle License Plate Localization and Recognition System. Journal of Systemics, Cybernetics and Informatics, 6(1), pp.13-20.
Ghorpade, A. and Katkar, P., 2014.Image Compression Using Haar Transform AndModified Fast Haar Wavelet Transform.International Journal of Scientific & Technology Research, 3(7), pp.302-305.
Ibrahim, N.K., Kasmuri, E., Jalil, N.A., Norasikin, M.A., Salam, S. and Nawawi, M.R.M., 2013.License Plate Recognition (LPR): A Review withExperiments for Malaysia Case Study.The International Journal of Soft Computing and Software Engineering, 3(3), pp.83-93.
Khushbu and Mehta, S., 2014.Image Pre-processing on Character Recognition usingNeural Networks.International Journal of Computer Applications, 82(13), pp.11-15.
Kurniawan, Agung. 2014. Populasi Kendaraan Bermotor di Indonesia Tembus 104,2 Juta Unit. [Online] available at: http://otomotif.kompas.com/read/2014/04/15/1541211/Populasi.Kendaraan.Bermotor.di.Indonesia.Tembus.104.2.Juta.Unit[Accessed 23 November 2015].
Laxmi, V. and Rohil, H., 2014.License Plate Recognition System using BackPropagation Neural Network.International Journal of Computer Applications, 99(8), pp.29-37.
Mai, V.D., Miao, D. and Wang, R., 2013. Vietnam License Plate Recognition Systembased on Edge Detection and Neural Networks.Journal of Information and Computing Science, 7(1), pp.27-40.
Melin, P. and Castillo, O., 2007. Hybrid Intelligent System for Pattern Recognition.Journal of Automation, Mobile Robotics & Intelligent Systems, 1(2), pp.13-19.
Olusina, J.O. and Samson, A.P., 2014.Determination of Predictive Models for TrafficCongestion in Lagos Metropolis.International Journal of Engineering and Applied Sciences, 5(2), pp.25-35.
Patel, S.G., 2013. Vehicle License Plate Recognition Using Morphology and Neural Network.International Journal on Cybernetics & Informatics, 2(1), pp.1-7.
Ramachandran, R., Manivannan, R., Ramachandiran, R. and Balachandar, N., 2015. Cloud Based Real Time Anti Vehicle Theft By Using LP Recognition And OCR Recognition. International Journal Of Engineering And Computer Science, 4(3), pp.10779-10786.
Rehman, M.Z. and Nawi, N.M., 2011. Improving the Accuracy of Gradient Descent Back PropagationAlgorithm (GDAM) on Classification Problems. International Journal on New Computer Architectures and Their Applications, 1(4), pp.838-847.
Shih, B., Chen, C., Chen, C., and Kuo, J., 2012.A Robust License Plate Recognition Methodology by Applying Hybird Artificial Techniques. International Journal of Innovative Computing,Information, and Control, 8(10), pp.6777-6785.
Singh, D. andKhehra, R.S., 2011. Digit Recognition System Using Back Propagation Neural Network. International Journal of Computer Science and Communication, 2(1), pp.197-205.
Singh, R.V. and Randhawa, N., 2014.Automobile Number Plate Recognition AndExtraction Using Optical Character Recognition. International Journal of Scientific & Technology Research, 3(10), pp.37-39.
Solanki, R., Rai, R. and Raikwar, T., 2013. The Automatic License Plate Recognition(ALPR).International Journal of Research in Engineering and Technology, 2(7), pp.161-167.
Tatale, S.and Khare, A., 2011, Real Time ANPRfor Vehicle Identification UsingNeural Network.International Journal of Advances in Engineering & Technology, 1(4), pp.262-268.
Tawade, L. and Warpe, H., 2011. Detection of Epilepsy Disorder Using Discrete Wavelet TransformsUsing MATLABs. International Journal of Advanced Science and Technology, 28(3), pp.17-24.
Varshney, S., Chaurasiya, R. and Tayal, Y., 2014.Optical Character Recognition using Neural Network.International Journal of Emerging Technology and Advanced Engineering, 4(8), pp.711-715.
Yingyong, Z., Jian, Z., Yongde, Z., Xinyan, C., Guangbin, Y. and Juhui, C., 2015.Research on Algorithm for Automatic License Plate Recognition System. International Journal of Multimedia Ubiquitous Engineering, 10(1), pp.101-108.
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.