Feature extraction in batik image geometric motif using canny edge detection

Authors

  • Muhammad Fikri Hidayattullah Informatic Engineering Department, Politeknik Harapan Bersama, Tegal
  • M. Nishom Informatic Engineering Department, Politeknik Harapan Bersama, Tegal
  • Slamet Wiyono Informatic Engineering Department, Politeknik Harapan Bersama, Tegal
  • Yustia Hapsari Information System Department, STMIK YMI Tegal

Keywords:

Batik, feature extraction, pattern recognition, Canny, edge detection

Abstract

One of Indonesia's priceless cultural heritages is batik. Even UNESCO was admitting that batik is an intellectual, cultural right of the Indonesian (October 2). Unfortunately, many Indonesian do not have sufficient knowledge about the various types of the existence of batik's motifs. In fact, in each of these motifs, many treasures must be maintained. Therefore, it is necessary to develop a model that can recognize batik motifs automatically. The model can be built using various kinds of pattern recognition algorithms. One of the most important stages in the introduction of batik motifs is the feature extraction. Feature extraction is needed to determine the parameters that able to define character a batik's motif. One feature extraction model that can be done is by using edge detection. This research focuses on feature extraction using Canny edge detection. The result of edge detection is forming the pattern of a batik motif. The pattern contains pixel values 0 and 1. These values can later be used as input at the classification stage.

References

B. Arisandi, N. Suciati, and A. Yudhi Wijaya, “Pengenalan Motif Batik Menggunakan Rotated Wavelet Filte dan Neural Network,†JUTI, J. Ilm. Teknol. Inf., vol. 9, no. 2, pp. 13–19, 2011.

J. W. Yodha and A. W. Kurniawan, “Pengenalan Motif Batik Menggunakan Deteksi Tepi Canny Dan K-Nearest Neighbor,†J. Techno.COM, Vol. 13, No. 4, Novemb. 2014 251-262, vol. 13, no. 4, pp. 251–262, 2014.

F. Flaurensia, T. Rismawan, R. Hidayati, and J. S. Komputer, “Pengenalan motif batik indonesia menggunakan deteksi tepi canny dan template matching,†J. Coding, Sist. Komput. Untan, vol. 4, no. 2, 2016.

V. Pebrianasari, E. Mulyanto, and D. Erlin, “Analisis pengenalan motif batik Pekalongan,†Techno.COM, vol. 14, no. 4, pp. 281–290, 2015.

A. Fanani, A. Yuniarti, and N. Suciati, "Geometric Feature Extraction of Batik Image Using Cardinal Spline Curve Representation," TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 12, no. 2, p. 397, 2015.

A. Kurniawardhani, N. Suciati, and I. Arieshanti, “Klasifikasi Citra Batik Menggunakan Metode Ekstraksi Ciri Yang Invariant Terhadap Rotasi,†JUTI J. Ilm. Teknol. Inf., vol. 12, no. 2, p. 48, Jul. 2014.

W. Rong, Z. Li, W. Zhang, and L. Sun, "An improved Canny edge detection algorithm," in 2014 IEEE International Conference on Mechatronics and Automation, 2014, vol. 2, no. 2, pp. 577–582.

Yuancheng Luo and R. Duraiswami, "Canny edge detection on NVIDIA CUDA," in 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, pp. 1–8.

J. Canny, The Essential Guide to Image Processing, vol. PAMI-8, no. 6. Elsevier, 2009.

S. Doellah, “Batik: Pengaruh Zaman dan Lingkungan,†by Danar Hadi, 2002.

A. Bovik, The Essential Guide to Image Processing, no. c. Elsevier, 2009.

S. Sahir, "Canny Edge Detection Step by Step in Python — Computer Vision," 2019. [Online]. Available: https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123.

Downloads

Published

2020-01-26