Facial recognition using deep learning

Abdulrazak Yahya Saleh, Kirthanaa A/P Jiva Rattinami

Abstract


In this article, the researcher presented the results of recognition of four emotional states (happy, sad, angry, and disgust) based on facial expressions. A deep learning method with a Convolutional Neural Network algorithm for recognizing problems has been proven very effective way to overcome the recognition problem. A comparative study is carried out using MUAD3D dataset from Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak for evaluating accuracy performance of this dataset. More discussion is provided to prove the effectiveness of the Convolutional Neural Network in recognition problems.

Keywords


Classification; Facial Recognition; Convolutional; Neural Network

Full Text:

PDF

References


J. Kumari, R. Rajesh, and K. M. Pooja, “Facial Expression Recognition: A Survey,” Procedia Comput. Sci., vol. 58, pp. 486–491, 2015 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1877050915021225

I. M. Revina and W. R. S. Emmanuel, “A Survey on Human Face Expression Recognition Techniques,” J. King Saud Univ. - Comput. Inf. Sci., Sep. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1319157818303379

F. Becerra-Riera, A. Morales-González, and H. Méndez-Vázquez, “Facial marks for improving face recognition,” Pattern Recognit. Lett., vol. 113, pp. 3–9, Oct. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167865517301423

W. Deng, Y. Fang, Z. Xu, and J. Hu, “Facial landmark localization by enhanced convolutional neural network,” Neurocomputing, vol. 273, pp. 222–229, Jan. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231217313668

Y. Liu, X. Yuan, X. Gong, Z. Xie, F. Fang, and Z. Luo, “Conditional convolution neural network enhanced random forest for facial expression recognition,” Pattern Recognit., vol. 84, pp. 251–261, Dec. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0031320318302516

A. T. Lopes, E. de Aguiar, A. F. De Souza, and T. Oliveira-Santos, “Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order,” Pattern Recognit., vol. 61, pp. 610–628, Jan. 2017 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0031320316301753

M. McCurrie, F. Beletti, L. Parzianello, A. Westendorp, S. Anthony, and W. J. Scheirer, “Convolutional Neural Networks for Subjective Face Attributes,” Image Vis. Comput., vol. 78, pp. 14–25, Oct. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0262885618301069

D. Sáez Trigueros, L. Meng, and M. Hartnett, “Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss,” Image Vis. Comput., vol. 79, pp. 99–108, Nov. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0262885618301562

S. Brahimi, N. Ben Aoun, and C. Ben Amar, “Boosted Convolutional Neural Network for object recognition at large scale,” Neurocomputing, vol. 330, pp. 337–354, Feb. 2019 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231218313596

C. Du, S. Gao, Y. Liu, and B. Gao, “Multi-focus image fusion using deep support value convolutional neural network,” Optik (Stuttg)., vol. 176, pp. 567–578, Jan. 2019 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0030402618313925

Y. Fu and C. Aldrich, “Flotation froth image recognition with convolutional neural networks,” Miner. Eng., vol. 132, pp. 183–190, Mar. 2019 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0892687518305533

Y. Seo and K. Shin, “Hierarchical convolutional neural networks for fashion image classification,” Expert Syst. Appl., vol. 116, pp. 328–339, Feb. 2019 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0957417418305992

B. B. Traore, B. Kamsu-Foguem, and F. Tangara, “Deep convolution neural network for image recognition,” Ecol. Inform., vol. 48, pp. 257–268, Nov. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1574954118302140

H. Yang et al., “Asymmetric 3D Convolutional Neural Networks for action recognition,” Pattern Recognit., vol. 85, pp. 1–12, Jan. 2019 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0031320318302632

P. V. Arun, I. Herrmann, K. M. Budhiraju, and A. Karnieli, “Convolutional network architectures for super-resolution/sub-pixel mapping of drone-derived images,” Pattern Recognit., vol. 88, pp. 431–446, Apr. 2019 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0031320318304217

H. Tang, B. Xiao, W. Li, and G. Wang, “Pixel convolutional neural network for multi-focus image fusion,” Inf. Sci. (Ny)., vol. 433–434, pp. 125–141, Apr. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0020025517311647

M. Yan, J. Guo, W. Tian, and Z. Yi, “Symmetric convolutional neural network for mandible segmentation,” Knowledge-Based Syst., vol. 159, pp. 63–71, Nov. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0950705118302983

H. Wu, J. Weng, X. Chen, and W. Lu, “Feedback weight convolutional neural network for gait recognition,” J. Vis. Commun. Image Represent., vol. 55, pp. 424–432, Aug. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1047320318301445

Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, and B. Yu, “Recent advances in convolutional neural network acceleration,” Neurocomputing, vol. 323, pp. 37–51, Jan. 2019 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231218311007

A. J. O’Toole, C. D. Castillo, C. J. Parde, M. Q. Hill, and R. Chellappa, “Face Space Representations in Deep Convolutional Neural Networks,” Trends Cogn. Sci., vol. 22, no. 9, pp. 794–809, Sep. 2018 [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1364661318301463