
Jurnal Informatika ISSN 1978-0524 (print) | 2528-6374 (online)
115

Vol. 15., No. 2, May 2021, pp. 115-122 http://journal.uad.ac.id/index.php/JIFO/index

 10.26555/jifo.v15i2.a20610 jifo@uad.ac.id

Improvements in data storage and tree generation in modified-

SPEED Algorithm

Mamun Bin Ibne Reaz a,1,*, Araf Farayez a

a Centre of Advanced Electronic and Communication Engineering, Faculty of Engineering and Built Environment,Universiti Kebangsaan

Malaysia, Bangi, Malaysia
1 mamun@ukm.edu.my *

* Corresponding Author

Received 28 April 2021; Accepted 4 May 2021; Published 31 May 2021

AB STRAC T

With the rising demand for smart devices and smart home systems, automation and activity

prediction have become a vital aspect of people’s everyday lives. Researchers have focused

on developing approaches which detect patterns in user activities and used them to predict

future actions. One such system is Modified Sequence Prediction via Enhanced Episode

Discovery (M-SPEED), that uses spatiotemporal data of activities of daily lives to analyze

user behaviors. But the low accuracy of this algorithm can be a limiting factor in efficient

activity prediction. Also, the computational overhead of run time and memory causes this

algorithm to show poor performance in case of large datasets. This research focuses on

modifying the M-SPEED algorithm to improve its capability to run on larger dataset while

at the same time improving run time. The accuracy is also improved to make it more

effective in real-world applications. Proof of algorithm efficiency is provided to ensure

system validity, and simulation is carried out on real-life data. The results demonstrate a

66.69% improvement in cumulative memory efficiency, 37% faster run time, and 8.22%

better accuracy confirming the effectiveness of the proposal.

KEYWORDS
Tree generation
SPEED
M-SPEED
Episode discovery

This is an open-access article under the CC–BY-SA license

1. Introduction

Smart home technology has become the 21st century life style, that integrates tech and its users.

For the 15% handicapped population and a growing number of elderly people all over the world, smart

home has already become a necessity [1]. It helps them to stay at home for longer, making their regular

lives more comfortable and self-reliant. Beginning its journey only a decade ago, smart home

technology has evolved into a multidimensional computing process over the last few years. It aims to

benefit not only the handicapped and elderly population of the world, but also different people coming

from different walks of life. With each passing year, the interactive technology is becoming more

pervasive and accurate in its predictions.

Over the past few decades numerous researches are conducted to develop an effective activity

prediction system to deliver automation in smart home environments [2]. In this quest, data

compression algorithms gained enormous recognition among researchers due to their pattern

predicting capabilities [3]. One of such is the LZ78. Bhattacharya and Das used the LZ78 dictionary

contexts to develop the LeZi update algorithm [4]. This approach assists in mobility tracking in smart

spaces by predicting user movements. But due to data loss across phase boundaries and slow

convergence rate, the LZ78 renders a significantly poor performance in real world applications [5].

The data loss is later improved by Gopalaratnam and Cook through introduction of a variable length

window in the improved algorithm Active LeZi (ALZ) [6]. This approach associates more weight to

recent activities thus adding higher sensitivity towards latest data. Vikramaditya and Cook further

developed temporal rules for the ALZ which improved the prediction accuracy and reduced error rate

by 1% for real data [7].

http://journal.uad.ac.id/index.php/JIFO/index
http://dx.doi.org/10.26555/jifo.v15i2.a20610
mailto:mamun@ukm.edu.my
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/jifo.v15i2.a20610&domain=pdf

116
ISSN 2086-8138 (print) | 2745-7249 (online)

Jurnal Informatika
Vol. 15, No. 2, May 2021, pp. 115-122

Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm)

Alam et al. developed the novel SPEED (Sequence Prediction via Enhance Episode Discovery)

algorithm utilizing the Prediction by Partial Matching (PPM) data compression method [8]. This

algorithm uses episodes, comprised of sequential events and behavioral patterns which are arranged

in a finite order Markov model. By achieving an accuracy of 88.3%, it performs better than LeZi

Update and ALZ algorithm. The SPEED is further improved by Marufuzzaman et al. by incorporating

the time component [9]. The resultant M-SPEED (Modified-SPEED) can eliminate false episode

detection and demonstrate a higher prediction accuracy. Further enhancements are added to this

process by introduction of the location component in order to specifically carry out particular actions

based on individual’s location in the house [10]. A more recent algorithm SPADE (Sequence

Prediction via All Discoverable Episodes) modifies the M-SPEED in tree generation phase to further

improve the accuracy and runtime [11].

PPM has a higher computational complexity compared to LZ78 and other data compression

approaches [12]. In the implementation of the SPEED algorithm, this complexity impacts the context

generation and linear storage of generated contexts. Due to exponential memory growth, this

algorithm is unable to process recent datasets like CASAS and ARAS [13], [14]. The primary goal of

this research is to address this issue and improve the performance of the SPEED algorithm, both in

terms of memory and run time.

2. Method

Smart home provides automation and comfort through the collection of user activities, using

sensors distributed throughout the house. An even distribution of sensors leads to a better prediction

of user actions. A wide variety of sensors are preferred, such as, motion sensors, power sensors, door

sensors, cabinet sensors, etc. Data from these sensors are first stored in current databases and later

passed on to the prediction engine in bulk. This data contains activities of daily life (ADLs).

In the first step, appropriate sequences are created from analyzing raw data. Here, the state info is

merged with the sensor codes by exploiting opposite cases of English alphabet. For ON state, the

sensor code is transformed into uppercase letter, and for OFF state, lowercase. Room number is

combined with the sensor codes and a limit is set for the maximum number of sensors. The final

sequence attains the following format:

[Sensor Event][Room number]@[Time]

In the next step, episodes are generated from these sequences. Episode generation process

developed by Alam et al. is implemented without any further modification [8]. Generated results are

stored in array along with their respective time intervals. This array is passed to the next module for

extraction of all-possible contexts.

Traditionally, the SPEED algorithm uses a linear 2-dimensional array to hold the generated

possibilities [9]. For an episode 'Abca', the possibilities are 'A', 'b', 'c', 'a', 'Ab', 'bc', 'ca', 'Abc', 'bca',

and 'Abca'. It is evident from this example that multiple repetitions may occur in the possibility array

depending on data diversity. A prefix tree based approach is suggested in this research to eliminate

these repetitions and improve algorithm performance. The suggested technique uses tree data structure

instead of linear array.

Fig. 1. Tree created for episode S

Jurnal Informatika 117
ISSN 2086-8138 (print) | 2745-7249 (online) Vol. 15, No. 2, May 2021, pp. 115-122

 Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm)

The extracted possibilities are passed on to the final step for the calculation of probabilities which

will later be used to predict future user actions. The remaining steps are reproduced from [8] without

alteration.

2.1. All Possible Context Extraction

This research proposes a faster and more efficient technique to create and store possibility contexts

in the SPEED algorithm. A prefix tree (also known as trie tree) design is introduced in the process

that can effectively conserve memory and serve as a container for possibilities generated from

episodes [15]. The possibility tree contains a root node ε and multiple subtrees connected to ε using

singly connected linked lists. Within the tree, node Tx occurring as a child of node Ty represents that,

event Ty is preceded by event Tx in the training dataset.

For each episode s of length k, k number of subtrees are formed under root node ε. Within each

subtree, every event sn is added to its preceding node s(n-1) as a child and assigned a frequency of value

1. In the event of a repeating subtree, the node will preexist in the structure. In that case, the frequency

of that node is incremented by 1. The general structure of the tree for episode s is shown in Fig. 1.

To make the tree generation step faster, a linear array nodes_array is appointed for each new

episode to hold the pointers to the leaf nodes. For every event sn in episode s, sn is added as a child to

all the pointed nodes in the nodes_array. Finally, the node sn is itself added to the nodes_array as a

new node. This step eliminated the need to repeatedly traversing the tree in order to add nodes to their

respected positions. The successive 4 iterations of the algorithm for episode 'Abca' is depicted in Fig.

2.

Fig. 2. Steps of the algorithm to form possibility tree for episode ‘Abca’

During first iteration, the event 'A' is added to the tree and concurrently pushed into nodes_array.

On second iteration, the event 'b' is first added to the tree. Then it is added as a child to all the nodes

residing in nodes_array. In this case, nodes_array contains 'A', therefore, a child 'b' is added to it.

Similarly, 'c' is added to all leaf nodes in iteration 3, and event 'a' is added in the final iteration. In this

specific example, the nodes are created for the first time, hence, value 1 is assigned as their

frequencies. If the node already existed, the frequency would have been incremented by 1.

To establish the run-time memory effectiveness of the proposed improvements, we have presented

following 4 hypotheses in this paper.

Hypothesis 1: Worst case space complexity of the possibility function of SPEED algorithm for

any episode of length k is in the order of k to the power of three.

Proof: After the episode generation phase, all possible contexts sharing adjacent events are

considered from the episodes and are stored in an array. For any episode s of length k, the number of

possibilities of length t will be k-t+1.

To demonstrate this, let us consider an episode 'Abca'.

118
ISSN 2086-8138 (print) | 2745-7249 (online)

Jurnal Informatika
Vol. 15, No. 2, May 2021, pp. 115-122

Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm)

 Possibilities containing 1 letter are 'A', 'b', 'c' and 'a' (in total 4).

 Possibilities containing 2 letters are 'Ab', 'bc' and 'ca' (in total 3).

 Possibilities containing 3 letters are 'Abc' and 'bca' (in total 2).

 Possibility containing 4 letters is 'Abcd' (in total 1).

Thus, we can infer, in SPEED algorithm, the total number of memory required (letters) for episode

of length k,

𝑀1(𝑘) = ∑ 𝑡 ∗ (𝑘 − 𝑡 + 1)𝑘
𝑡=1 = (𝑘 + 1) ∗ ∑ 𝑡𝑘

𝑡=1 − ∑ 𝑡2𝑘
𝑡=1 =

𝑘∗(𝑘+1)2

2
−

𝑘∗(𝑘+1)∗(2𝑘+1)

6
=

𝑘3+3𝑘2+2𝑘

6
 (1)

Hence, the worst-case space complexity is in the order of Ο(k^3), where k is the number of events

in an episode.

Hypothesis 2: Worst case appears when a large episode covers the whole data and there is no

repetition of events.

Proof: If an event sequence D contains n number of episodes of length k_n, where k=∑k_n , then

we know (2a) and (2b),

𝑘3 ≥ ∑(𝑘𝑛)3 (2a)

And𝑘2 ≥ ∑(𝑘𝑛)2 (2b)

Therefore, we can conclude from Equation (1)

𝑀1(𝑘) ≥ 𝑀1(𝑘𝑛) (3)

That means, when the data sequence is divided into two or more episodes, the allocated memory

can not be larger than the whole dataset being a single episode (3).

Hypothesis 3: Worst case space complexity of the suggested possibility function for any episode

of length k is in the order of k to the power of two.

Proof: The prefix tree implemented in this research connects the nodes using singly connected

linked lists. Every node contains one letter (to denote its event), frequency, and an address to the next

node. For an episode s of length k, the number of nodes at level l will be k-l+1, where 1≤l≤k.

This argument can be demonstrated by visualizing the tree formed by the episode 'Abca' in Fig. 3.

Here, for every level, the node count is decremented by 1.

Fig. 3. Context tree formed for episode ‘Abcd’

Hence, the total amount of required memory for episode of length k is:

𝑀2(𝑘) = ∑ (𝑘 − 𝑙 + 1)𝑘
𝑙=1 =

𝑘∗(𝑘+1)

2
 (4)

Jurnal Informatika 119
ISSN 2086-8138 (print) | 2745-7249 (online) Vol. 15, No. 2, May 2021, pp. 115-122

 Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm)

Therefore, the worst-case space complexity of the proposed possibility generation module is in the

order of Ο(k2), where k is the number of events in an episode.

Hypothesis 4: Worst case appears when a large episode covers the whole data and there is no

repetition of events.

Proof: Similar to Hypothesis 2, when a data sequence is divided into n number of episodes of

length kn, where k=∑kn, we can say,

𝑘2 ≥ ∑(𝑘𝑛)2 (2b)

Putting these values in Equation (4) we find,

𝑀2(𝑘) ≥ 𝑀2(𝑘𝑛) (5)

This proves that dataset having one large episode covering the whole sequence will require

maximum amount of memory.

In the previous SPEED algorithms, the Tree generation step following the All possible context

generation module was used to simultaneously create the decision tree and allocate the probability of

outcomes. This resulted in misaligned probabilities among different branches of the tree. This research

separates the tree generation from the probability allocation. This technique can ensure uniform

distribution of probabilities and significantly improve the accuracy of prediction.

The decision tree formed during the Possibility generation phase is traversed using a Depth First

Search (DFS) traversal to visit all nodes and set their respective probabilities. At any given level the

algorithm first goes to the leftmost child node and recursively reaches its bottom. Upon reaching a

leaf node, sets its probability value and travels back to its immediate parent node. When the leftmost

node child node is already traveled, the algorithm steps to the child node to its right and follows the

same recursive procedure. This way every subtree is visited from bottom to top and left to right. This

process can result in having better prediction accuracy than the SPEED algorithm.

3. Results and discussion

In this section, proposed algorithm is compared with SPEED in terms of memory overhead and

runtime in order to validate the presented research. MavHome dataset is used in the simulations of

both approaches. The training dataset contains 1675 chronological events.

Firstly, the memory consumption of the two algorithms in Possibility module are calculated and

contrasted. To get a reliable estimation, the actual byte count of events is considered, overlooking the

memory required for frequency and time. It is to be noted that, in terms of SPEED, the individual

events in every possibility allocates 1 byte of memory. So, for a possibility Abc, 3 bytes are occupied

in the memory. Fig. 4(a) exhibits the average memory required for different episode lengths. The use

of array in SPEED results in an exponential growth of memory as the episode length increases. On

the other hand, a linear growth is observed in the modified approach, as it utilizes a tree data structure.

The final result can be viewed in Fig. 4(b) which shows the cumulative growth of allocated memory

for successive episodes. Due to the exponential growth in SPEED, the resultant operating memory

increases rapidly. This is obvious that for larger datasets, the algorithm performance will decline

significantly and for even larger datasets, this approach will fail. The proposed algorithm can resolve

this issue by effectively utilizing runtime memory. The simulations result shows an improvement of

cumulative memory efficiency by nearly 66.69%.

120
ISSN 2086-8138 (print) | 2745-7249 (online)

Jurnal Informatika
Vol. 15, No. 2, May 2021, pp. 115-122

Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm)

(a) (b)

Fig. 4. (a) Average memory comparison between SPEED and this research, (b) The cumulative
growth of allocated memory for successive episodes

Secondly, running time of the possibility generation module is calculated for both algorithms with

respect to episode lengths. The performance results of the two algorithms on MavHome data is

demonstrated in Fig 5. During the timing phase, utility function calls are ignored in order to obtain

authentic results which can assist in a better comparison between the two procedures.

Fig. 5. Running time comparison between SPEED and this research

Fig. 6 charts the accuracy of the proposed algorithm and M-SPEED on MavLab dataset with

respect to episode lengths. Here, the episode lengths refer to the number of sequential events

constituting a particular activity. An accuracy of 78% for episode length 4 indicates that, when the

trained model predicts activity after 3 consecutive known events, an average of 78% accuracy is

achieved. The graph shows a uniform increase in prediction capability of around 10% for the presented

approach. This is a concrete establishment that the proposed algorithm performs better than the

previous M-SPEED in every possible episode length.

Jurnal Informatika 121
ISSN 2086-8138 (print) | 2745-7249 (online) Vol. 15, No. 2, May 2021, pp. 115-122

 Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm)

Fig. 6. Accuracy comparison of SPADE and M-SPEED on MavLab dataset with time verification

Linear searching of matching possibilities in the SPEED algorithm causes it to greatly depend on

the data composition. For example, even for an episode of length 1, the algorithm needs to search the

whole possibility array to increase its frequency. On the other hand, due to guaranteed addition of

nodes to the tree, the Possibility module presented in this research does not require any searching.

Thus, a gradual increase is perceived in the corresponding graphs. Overall, the average runtime

experiences nearly 37% improvement in the new algorithm.

This study shows that, modifying the possibility generation function in the SPEED algorithm

according to the proposed technique can provide a solution to the memory consumption issue, while

at the same time improving the runtime of the algorithm. The results agree with the hypothesis and

prove the effectiveness of the presented technique.

4. Conclusion

In the fields of automation for user convenience, M-SPEED delivers a significant contribution by

providing highly accurate user activity predictions. But exponential memory allocation and extended

runtime cause this algorithm to suffer greatly when large datasets are considered. Live data from

existing smart homes comprises enormous amount of data instances and thus, M-SPEED becomes

ineffective in various occasions. This research demonstrates an approach to substitute linear array with

tree data structure in the all possible context generation phase, in order to make M-SPEED suitable

for larger datasets and real-world situations. The proposed algorithm also improves the prediction

accuracy for smart homes. This study will assist future researches on activity prediction to effortlessly

integrate massive data sources.

Acknowledgment

This research is financially supported by the Universiti Kebangsaan Malaysia, Malaysia. Project code:

DIP-2017-003.

Declarations

Author contribution. The author read and approved the final paper.

Funding statement. None of the authors have received any funding or grants from any institution or

funding body for the research.

Conflict of interest. The author declares no conflict of interest.

Additional information. No additional information is available for this paper.

References

[1] “Washington, D.C. : World Bank Group. World report on disability : Main report (English),” 2011. [Online]. Available:

http://documents.worldbank.org/curated/en/665131468331271288/Main-report.

[2] M. R. Alam, M. B. I. Reaz, and M. A. M. Ali, “A Review of Smart Homes—Past, Present, and Future,” IEEE Trans.

Syst. Man, Cybern. Part C (Applications Rev., vol. 42, no. 6, pp. 1190–1203, Nov. 2012, doi:

10.1109/TSMCC.2012.2189204.

[3] S. Wu et al., “Survey on Prediction Algorithms in Smart Homes,” IEEE Internet Things J., vol. 4, no. 3, pp. 636–644,

Jun. 2017, doi: 10.1109/JIOT.2017.2668061.

http://documents.worldbank.org/curated/en/665131468331271288/Main-report
https://doi.org/10.1109/TSMCC.2012.2189204
https://doi.org/10.1109/JIOT.2017.2668061

122
ISSN 2086-8138 (print) | 2745-7249 (online)

Jurnal Informatika
Vol. 15, No. 2, May 2021, pp. 115-122

Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm)

[4] A. Bhattacharya and S. K. Das, “LeZi-Update: An Information-Theoretic Framework for Personal Mobility Tracking in

PCS Networks,” Wirel. Networks, vol. 8, pp. 121–135, 2002, doi: 10.1023/A:1013759724438.

[5] K. GOPALRATNAM and D. J. COOK, “ACTIVE LEZI: AN INCREMENTAL PARSING ALGORITHM FOR

SEQUENTIAL PREDICTION,” Int. J. Artif. Intell. Tools, vol. 13, no. 04, pp. 917–929, Dec. 2004, doi:

10.1142/S0218213004001892.

[6] K. Gopalratnam and D. Cook, “Online Sequential Prediction via Incremental Parsing: The Active LeZi Algorithm,”

IEEE Intell. Syst., vol. 22, no. 1, pp. 52–58, Jan. 2007, doi: 10.1109/MIS.2007.15.

[7] V. Jakkula and D. J. Cook, “Mining sensor data in smart environment for temporal activity prediction,” Poster Sess.

ACM SIGKDD, San Jose, CA, 2007. Available: Google Scholar.

[8] M. R. Alam, M. B. I. Reaz, and M. A. Mohd Ali, “SPEED: An Inhabitant Activity Prediction Algorithm for Smart Homes,”

IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans, vol. 42, no. 4, pp. 985–990, Jul. 2012, doi:

10.1109/TSMCA.2011.2173568.

[9] M. Marufuzzaman, M. B. I. Reaz, M. A. M. Ali, and L. F. Rahman, “A Time Series Based Sequence Prediction

Algorithm to Detect Activities of Daily Living in Smart Home,” Methods Inf. Med., vol. 54, no. 03, pp. 262–270, Jan.

2015, doi: 10.3414/ME14-01-0061.

[10] M. Marufuzzaman, M. B. I. Reaz, L. F. Rahman, and A. Farayez, “A Location Based Sequence Prediction Algorithm

for Determining Next Activity in Smart Home,” J. Eng. Sci. Technol. Rev., vol. 10, no. 2, pp. 161–165, Jun. 2017, doi:

10.25103/jestr.102.19.

[11] A. Farayez, M. B. I. Reaz, and N. Arsad, “SPADE: Activity Prediction in Smart Homes Using Prefix Tree Based

Context Generation,” IEEE Access, vol. 7, pp. 5492–5501, 2019, doi: 10.1109/ACCESS.2018.2888923.

[12] W. J. Teahan, “Probability estimation for PPM,” Proc. NZCSRSC’95, 1995. Available: Google Scholar.

[13] D. J. Cook and M. Schmitter-Edgecombe, “Assessing the Quality of Activities in a Smart Environment,” Methods Inf.

Med., vol. 48, no. 05, pp. 480–485, Jan. 2009, doi: 10.3414/ME0592.

[14] H. Alemdar, H. Ertan, O. D. Incel, and C. Ersoy, “ARAS human activity datasets in multiple homes with multiple

residents,” 2013 7th Int. Conf. Pervasive Comput. Technol. Healthc. Work., pp. 232–235, 2013. Available: Google

Scholar.

[15] R. Begleiter, R. El-Yaniv, and G. Yona, “On Prediction Using Variable Order Markov Models,” J. Artif. Intell. Res.,

vol. 22, pp. 385–421, Dec. 2004, doi: 10.1613/jair.1491.

https://doi.org/10.1023/A:1013759724438
https://doi.org/10.1142/S0218213004001892
https://doi.org/10.1109/MIS.2007.15
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Mining+sensor+data+in+smart+environment+for+temporal+activity+prediction&btnG=
https://doi.org/10.1109/TSMCA.2011.2173568
https://doi.org/10.3414/ME14-01-0061
https://doi.org/10.25103/jestr.102.19
https://doi.org/10.1109/ACCESS.2018.2888923
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Probability+estimation+for+PPM&btnG=
https://doi.org/10.3414/ME0592
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=ARAS+human+activity+datasets+in+multiple+homes+with+multiple+residents&btnG=
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=ARAS+human+activity+datasets+in+multiple+homes+with+multiple+residents&btnG=
https://doi.org/10.1613/jair.1491

