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AB STRAC T  

With the rising demand for smart devices and smart home systems, automation and activity 

prediction have become a vital aspect of people’s everyday lives. Researchers have focused 

on developing approaches which detect patterns in user activities and used them to predict 

future actions. One such system is Modified Sequence Prediction via Enhanced Episode 

Discovery (M-SPEED), that uses spatiotemporal data of activities of daily lives to analyze 

user behaviors. But the low accuracy of this algorithm can be a limiting factor in efficient 

activity prediction. Also, the computational overhead of run time and memory causes this 

algorithm to show poor performance in case of large datasets. This research focuses on 

modifying the M-SPEED algorithm to improve its capability to run on larger dataset while 

at the same time improving run time. The accuracy is also improved to make it more 

effective in real-world applications. Proof of algorithm efficiency is provided to ensure 

system validity, and simulation is carried out on real-life data. The results demonstrate a 

66.69% improvement in cumulative memory efficiency, 37% faster run time, and 8.22% 

better accuracy confirming the effectiveness of the proposal. 
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1. Introduction  

Smart home technology has become the 21st century life style, that integrates tech and its users. 

For the 15% handicapped population and a growing number of elderly people all over the world, smart 

home has already become a necessity [1]. It helps them to stay at home for longer, making their regular 

lives more comfortable and self-reliant. Beginning its journey only a decade ago, smart home 

technology has evolved into a multidimensional computing process over the last few years. It aims to 

benefit not only the handicapped and elderly population of the world, but also different people coming 

from different walks of life. With each passing year, the interactive technology is becoming more 

pervasive and accurate in its predictions. 

Over the past few decades numerous researches are conducted to develop an effective activity 

prediction system to deliver automation in smart home environments [2]. In this quest, data 

compression algorithms gained enormous recognition among researchers due to their pattern 

predicting capabilities [3]. One of such is the LZ78. Bhattacharya and Das used the LZ78 dictionary 

contexts to develop the LeZi update algorithm [4]. This approach assists in mobility tracking in smart 

spaces by predicting user movements. But due to data loss across phase boundaries and slow 

convergence rate, the LZ78 renders a significantly poor performance in real world applications [5]. 

The data loss is later improved by Gopalaratnam and Cook through introduction of a variable length 

window in the improved algorithm Active LeZi (ALZ) [6]. This approach associates more weight to 

recent activities thus adding higher sensitivity towards latest data. Vikramaditya and Cook further 

developed temporal rules for the ALZ which improved the prediction accuracy and reduced error rate 

by 1% for real data [7]. 
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Alam et al. developed the novel SPEED (Sequence Prediction via Enhance Episode Discovery) 

algorithm utilizing the Prediction by Partial Matching (PPM) data compression method [8]. This 

algorithm uses episodes, comprised of sequential events and behavioral patterns which are arranged 

in a finite order Markov model. By achieving an accuracy of 88.3%, it performs better than LeZi 

Update and ALZ algorithm. The SPEED is further improved by Marufuzzaman et al. by incorporating 

the time component [9]. The resultant M-SPEED (Modified-SPEED) can eliminate false episode 

detection and demonstrate a higher prediction accuracy. Further enhancements are added to this 

process by introduction of the location component in order to specifically carry out particular actions 

based on individual’s location in the house [10]. A more recent algorithm SPADE (Sequence 

Prediction via All Discoverable Episodes) modifies the M-SPEED in tree generation phase to further 

improve the accuracy and runtime [11]. 

PPM has a higher computational complexity compared to LZ78 and other data compression 

approaches [12]. In the implementation of the SPEED algorithm, this complexity impacts the context 

generation and linear storage of generated contexts. Due to exponential memory growth, this 

algorithm is unable to process recent datasets like CASAS and ARAS [13], [14]. The primary goal of 

this research is to address this issue and improve the performance of the SPEED algorithm, both in 

terms of memory and run time. 

2. Method 

Smart home provides automation and comfort through the collection of user activities, using 

sensors distributed throughout the house. An even distribution of sensors leads to a better prediction 

of user actions. A wide variety of sensors are preferred, such as, motion sensors, power sensors, door 

sensors, cabinet sensors, etc. Data from these sensors are first stored in current databases and later 

passed on to the prediction engine in bulk. This data contains activities of daily life (ADLs). 

In the first step, appropriate sequences are created from analyzing raw data. Here, the state info is 

merged with the sensor codes by exploiting opposite cases of English alphabet. For ON state, the 

sensor code is transformed into uppercase letter, and for OFF state, lowercase. Room number is 

combined with the sensor codes and a limit is set for the maximum number of sensors. The final 

sequence attains the following format: 

[Sensor Event][Room number]@[Time] 

In the next step, episodes are generated from these sequences. Episode generation process 

developed by Alam et al. is implemented without any further modification [8]. Generated results are 

stored in array along with their respective time intervals. This array is passed to the next module for 

extraction of all-possible contexts. 

Traditionally, the SPEED algorithm uses a linear 2-dimensional array to hold the generated 

possibilities [9]. For an episode 'Abca', the possibilities are 'A', 'b', 'c', 'a', 'Ab', 'bc', 'ca', 'Abc', 'bca', 

and 'Abca'. It is evident from this example that multiple repetitions may occur in the possibility array 

depending on data diversity. A prefix tree based approach is suggested in this research to eliminate 

these repetitions and improve algorithm performance. The suggested technique uses tree data structure 

instead of linear array.  

 

Fig. 1. Tree created for episode S 
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The extracted possibilities are passed on to the final step for the calculation of probabilities which 

will later be used to predict future user actions. The remaining steps are reproduced from [8] without 

alteration.  

2.1.  All Possible Context Extraction 

This research proposes a faster and more efficient technique to create and store possibility contexts 

in the SPEED algorithm. A prefix tree (also known as trie tree) design is introduced in the process 

that can effectively conserve memory and serve as a container for possibilities generated from 

episodes [15]. The possibility tree contains a root node ε and multiple subtrees connected to ε using 

singly connected linked lists. Within the tree, node Tx occurring as a child of node Ty represents that, 

event Ty is preceded by event Tx in the training dataset. 

For each episode s of length k, k number of subtrees are formed under root node ε. Within each 

subtree, every event sn is added to its preceding node s(n-1) as a child and assigned a frequency of value 

1. In the event of a repeating subtree, the node will preexist in the structure. In that case, the frequency 

of that node is incremented by 1. The general structure of the tree for episode s is shown in Fig. 1. 

To make the tree generation step faster, a linear array nodes_array is appointed for each new 

episode to hold the pointers to the leaf nodes. For every event sn in episode s, sn is added as a child to 

all the pointed nodes in the nodes_array. Finally, the node sn is itself added to the nodes_array as a 

new node. This step eliminated the need to repeatedly traversing the tree in order to add nodes to their 

respected positions. The successive 4 iterations of the algorithm for episode 'Abca' is depicted in Fig. 

2. 

 

 

Fig. 2. Steps of the algorithm to form possibility tree for episode ‘Abca’ 

During first iteration, the event 'A' is added to the tree and concurrently pushed into nodes_array. 

On second iteration, the event 'b' is first added to the tree. Then it is added as a child to all the nodes 

residing in nodes_array. In this case, nodes_array contains 'A', therefore, a child 'b' is added to it. 

Similarly, 'c' is added to all leaf nodes in iteration 3, and event 'a' is added in the final iteration. In this 

specific example, the nodes are created for the first time, hence, value 1 is assigned as their 

frequencies. If the node already existed, the frequency would have been incremented by 1. 

To establish the run-time memory effectiveness of the proposed improvements, we have presented 

following 4 hypotheses in this paper. 

Hypothesis 1: Worst case space complexity of the possibility function of SPEED algorithm for 

any episode of length k is in the order of k to the power of three. 

Proof: After the episode generation phase, all possible contexts sharing adjacent events are 

considered from the episodes and are stored in an array. For any episode s of length k, the number of 

possibilities of length t will be k-t+1. 

To demonstrate this, let us consider an episode 'Abca'. 
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 Possibilities containing 1 letter are 'A', 'b', 'c' and 'a' (in total 4).  

 Possibilities containing 2 letters are 'Ab', 'bc' and 'ca' (in total 3). 

 Possibilities containing 3 letters are 'Abc' and 'bca' (in total 2). 

 Possibility containing 4 letters is 'Abcd' (in total 1). 

Thus, we can infer, in SPEED algorithm, the total number of memory required (letters) for episode 

of length k, 

𝑀1(𝑘) =  ∑ 𝑡 ∗ (𝑘 − 𝑡 + 1)𝑘
𝑡=1 = (𝑘 + 1) ∗ ∑ 𝑡𝑘

𝑡=1 − ∑ 𝑡2𝑘
𝑡=1 =

𝑘∗(𝑘+1)2

2
−

𝑘∗(𝑘+1)∗(2𝑘+1)

6
=

𝑘3+3𝑘2+2𝑘

6
 (1) 

Hence, the worst-case space complexity is in the order of Ο(k^3), where k is the number of events 

in an episode. 

Hypothesis 2: Worst case appears when a large episode covers the whole data and there is no 

repetition of events. 

Proof: If an event sequence D contains n number of episodes of length k_n, where k=∑k_n , then 

we know (2a) and (2b), 

𝑘3 ≥ ∑(𝑘𝑛)3 (2a) 

And𝑘2 ≥ ∑(𝑘𝑛)2 (2b) 

Therefore, we can conclude from Equation (1) 

𝑀1(𝑘) ≥  𝑀1(𝑘𝑛) (3) 

That means, when the data sequence is divided into two or more episodes, the allocated memory 

can not be larger than the whole dataset being a single episode (3). 

Hypothesis 3: Worst case space complexity of the suggested possibility function for any episode 

of length k is in the order of k to the power of two. 

Proof: The prefix tree implemented in this research connects the nodes using singly connected 

linked lists. Every node contains one letter (to denote its event), frequency, and an address to the next 

node. For an episode s of length k, the number of nodes at level l will be k-l+1, where 1≤l≤k. 

This argument can be demonstrated by visualizing the tree formed by the episode 'Abca' in Fig. 3. 

Here, for every level, the node count is decremented by 1. 

 

Fig. 3. Context tree formed for episode ‘Abcd’ 

Hence, the total amount of required memory for episode of length k is: 

𝑀2(𝑘) =  ∑ (𝑘 − 𝑙 + 1)𝑘
𝑙=1 =  

𝑘∗(𝑘+1)

2
 (4) 
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Therefore, the worst-case space complexity of the proposed possibility generation module is in the 

order of Ο(k2), where k is the number of events in an episode. 

Hypothesis 4: Worst case appears when a large episode covers the whole data and there is no 

repetition of events. 

Proof: Similar to Hypothesis 2, when a data sequence is divided into n number of episodes of 

length kn, where k=∑kn, we can say, 

𝑘2 ≥ ∑(𝑘𝑛)2 (2b) 

Putting these values in Equation (4) we find, 

𝑀2(𝑘) ≥  𝑀2(𝑘𝑛) (5) 

This proves that dataset having one large episode covering the whole sequence will require 

maximum amount of memory. 

In the previous SPEED algorithms, the Tree generation step following the All possible context 

generation module was used to simultaneously create the decision tree and allocate the probability of 

outcomes. This resulted in misaligned probabilities among different branches of the tree. This research 

separates the tree generation from the probability allocation. This technique can ensure uniform 

distribution of probabilities and significantly improve the accuracy of prediction. 

The decision tree formed during the Possibility generation phase is traversed using a Depth First 

Search (DFS) traversal to visit all nodes and set their respective probabilities. At any given level the 

algorithm first goes to the leftmost child node and recursively reaches its bottom. Upon reaching a 

leaf node, sets its probability value and travels back to its immediate parent node. When the leftmost 

node child node is already traveled, the algorithm steps to the child node to its right and follows the 

same recursive procedure. This way every subtree is visited from bottom to top and left to right. This 

process can result in having better prediction accuracy than the SPEED algorithm. 

3. Results and discussion 

In this section, proposed algorithm is compared with SPEED in terms of memory overhead and 

runtime in order to validate the presented research. MavHome dataset is used in the simulations of 

both approaches. The training dataset contains 1675 chronological events. 

Firstly, the memory consumption of the two algorithms in Possibility module are calculated and 

contrasted. To get a reliable estimation, the actual byte count of events is considered, overlooking the 

memory required for frequency and time. It is to be noted that, in terms of SPEED, the individual 

events in every possibility allocates 1 byte of memory. So, for a possibility Abc, 3 bytes are occupied 

in the memory. Fig. 4(a) exhibits the average memory required for different episode lengths. The use 

of array in SPEED results in an exponential growth of memory as the episode length increases. On 

the other hand, a linear growth is observed in the modified approach, as it utilizes a tree data structure. 

The final result can be viewed in Fig. 4(b) which shows the cumulative growth of allocated memory 

for successive episodes. Due to the exponential growth in SPEED, the resultant operating memory 

increases rapidly. This is obvious that for larger datasets, the algorithm performance will decline 

significantly and for even larger datasets, this approach will fail. The proposed algorithm can resolve 

this issue by effectively utilizing runtime memory. The simulations result shows an improvement of 

cumulative memory efficiency by nearly 66.69%. 

 

 



120 
ISSN 2086-8138 (print) | 2745-7249 (online) 

Jurnal Informatika 
Vol. 15, No. 2, May 2021, pp. 115-122 

 
 

Reaz et al. (Improvements in data storage and tree generation in modified-SPEED Algorithm) 

  
(a) (b) 

Fig. 4. (a) Average memory comparison between SPEED and this research, (b) The cumulative 
growth of allocated memory for successive episodes 

Secondly, running time of the possibility generation module is calculated for both algorithms with 

respect to episode lengths. The performance results of the two algorithms on MavHome data is 

demonstrated in Fig 5. During the timing phase, utility function calls are ignored in order to obtain 

authentic results which can assist in a better comparison between the two procedures. 

 

Fig. 5. Running time comparison between SPEED and this research 

Fig. 6 charts the accuracy of the proposed algorithm and M-SPEED on MavLab dataset with 

respect to episode lengths. Here, the episode lengths refer to the number of sequential events 

constituting a particular activity. An accuracy of 78% for episode length 4 indicates that, when the 

trained model predicts activity after 3 consecutive known events, an average of 78% accuracy is 

achieved. The graph shows a uniform increase in prediction capability of around 10% for the presented 

approach. This is a concrete establishment that the proposed algorithm performs better than the 

previous M-SPEED in every possible episode length. 
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Fig. 6. Accuracy comparison of SPADE and M-SPEED on MavLab dataset with time verification 

Linear searching of matching possibilities in the SPEED algorithm causes it to greatly depend on 

the data composition. For example, even for an episode of length 1, the algorithm needs to search the 

whole possibility array to increase its frequency. On the other hand, due to guaranteed addition of 

nodes to the tree, the Possibility module presented in this research does not require any searching. 

Thus, a gradual increase is perceived in the corresponding graphs. Overall, the average runtime 

experiences nearly 37% improvement in the new algorithm. 

This study shows that, modifying the possibility generation function in the SPEED algorithm 

according to the proposed technique can provide a solution to the memory consumption issue, while 

at the same time improving the runtime of the algorithm. The results agree with the hypothesis and 

prove the effectiveness of the presented technique.  

4. Conclusion 

In the fields of automation for user convenience, M-SPEED delivers a significant contribution by 

providing highly accurate user activity predictions. But exponential memory allocation and extended 

runtime cause this algorithm to suffer greatly when large datasets are considered. Live data from 

existing smart homes comprises enormous amount of data instances and thus, M-SPEED becomes 

ineffective in various occasions. This research demonstrates an approach to substitute linear array with 

tree data structure in the all possible context generation phase, in order to make M-SPEED suitable 

for larger datasets and real-world situations. The proposed algorithm also improves the prediction 

accuracy for smart homes. This study will assist future researches on activity prediction to effortlessly 

integrate massive data sources. 
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