Ethnomathematics: An Exploration of Mathematical Concepts in Batik Sidoluhur Solo

Naufal Ishartono, Dewi Ayu Ningtyas

Abstract


Many ethnomathematical studies examine the existence of mathematics concepts in Indonesian cultural products where batik is one of them. However, there is a lacunae from previous studies that examine the existence of mathematical concepts in Batik Sidoluhur. Therefore, the current study aims to explore mathematical concepts in Batik Sidoluhur, such as geometry, algebra, arithmetic, and statistics. The study used ethnography as an approach by answering four principal questions, namely "where do I start looking?", "how do I find it?", "how do I recognize that it has found something significant?" and "how to understand what it is?". By answering the questions, researchers managed to examine the mathematical concept contained in Batik Sidoluhur. From the four mathematical concepts explored, namely geometry, algebra, statistics, and arithmetic, only the concept of geometry is contained in Batik Sidoluhur and has been confirmed by a geometry expert. Sub-concepts of geometry found are (1) sub-concepts of geometry transformations such as translation and reflection, (2) plane geometry such as rhombuses, rectangles, triangles, and circles, and (3) congruence. It is hoped that the results of this study can be used as materials to promote Batik Sidoluhur to the younger generation through contextual and meaningful mathematics learning. In this article also explained how to use the context of Batik Sidoluhur in mathematics learning.

Keywords


Ethnomathematics; Etnography; Batik Sidoluhur

References


Afifah, D. S. N., Putri, I. M., & Listiawan, T. (2020). Eksplorasi Etnomatematika pada Batik Gajah Mada Motif Sekar Jagad Tulungagung (Ethnomathematic Exploration in Gajah Mada Batik with Sekar Jagad Tulungagung Motif). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 101–112. https://doi.org/10.30598/barekengvol14iss1pp101-112

Arwanto. (2017). Eksplorasi Etnomatematika Batik Trusmi Cirebon untuk Mengungkapkan Nilai Filosofi dan Konsep Matematis (Exploration of Trusmi Cirebon Batik Ethnomatics to Express Philosophical Values and Mathematical Concepts). Phenomenon : Jurnal Pendidikan MIPA, 7(1), 40–49. https://doi.org/10.21580/phen.2017.7.1.1493

Berg, M. de, Cheong, O., Kreveld, M. van, & Overmars, M. (2008). Computational Geometry: Algorithms and Applications (3rd ed.). https://doi.org/10.1007/978-3-540-77974-2

D’Ambrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. For the Learning of Mathematics, 5(1), 44–48. Retrieved from http://www.jstor.org/stable/40247876

D’Ambrosio, U. (1999). Literacy, Matheracy, and Technocracy: A Trivium for Today. Mathematical Thinking and Learning, 1, 131–153. https://doi.org/10.1207/s15327833mtl0102_3

Dhenabayu, R., Sari, H. P., & Yunita Sari, S. V. (2018). Sistem Pakar Penentuan Motif Dan Warna Batik Berdasarkan Ciri Fisik Dengan Metode Forward Chaining (Batik Authives And Colors Based On Physical Features With The Forward Chaining Method). Antivirus : Jurnal Ilmiah Teknik Informatika, 12(1), 1–15. https://doi.org/10.35457/antivirus.v12i1.439

Faiziyah, N., Khoirunnisa, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, … Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720(1), 1–5. https://doi.org/10.1088/1742-6596/1720/1/012013

Fathikhin, N., & Wijayanti, P. (2020). Exploration of Ngawi Batik Ethnomatematics to Unlock Philosophy Values and Mathematics Concepts. Journal Intellectual Sufism Research (JISR), 3(1), 26–37. https://doi.org/10.52032/jisr.v3i1.81

Fitri, N. L., & Prahmana, R. C. I. (2020). Designing learning trajectory of circle using the context of Ferris wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247–261. https://doi.org/10.23917/jramathedu.v5i3.10961

Gaffney, D. (2021). What is Batik? Retrieved May 7, 2021, from The Batik Guild website: http://www.batikguild.org.uk/batik/what-is-batik

Irawan, A., Lestari, M., Rahayu, W., & Wulan, R. (2019). Ethnomathematics batik design Bali island. Journal of Physics: Conference Series, 1338(1), 1–5. https://doi.org/10.1088/1742-6596/1338/1/012045

Johnson, R. A. (1929). Modern geometry: an elementary treatise on the geometry of the triangle and the circle. Retrieved from https://books.google.co.id/books/about/Modern_Geometry.html?id=KVdtAAAAMAAJ&redir_esc=y

Judith, H., & Markus, H. (2008). Introduction to GeoGebra. Retrieved from Geogebra website: www.geogebra.org%0A

Kalinggo, W. (2010). Mitos Dibalik Motif Batik Solo (The Myth Behind Solo Batik Motif). Retrieved May 4, 2021, from kabarsoloraya.com website: https://bosbatik.wordpress.com/2010/07/09/mitos-dibalik-batik-solo/

Katsap, A. (2017). Opening the Door to Ethnomathematics in Israel. In Series on Mathematics Education: Vol. Volume 13. K-12 Mathematics Education in Israel (pp. 377–384). https://doi.org/doi:10.1142/9789813231191_0042

Lisnani, Zulkardi, Putri, R. I. I., & Somakim. (2020). Etnomatematika : Pengenalan Bangun Datar Melalui Konteks Museum Negeri Sumatera Selatan Balaputera Dewa (Ethnomatematics: Introduction to Flat-Building Through the Context of the State Museum of South Sumatra Balaputera Dewa). Mosharafa: Jurnal Pendidikan Matematika, 9(September), 359–370.

Mahuda, I. (2020). Eksplorasi Etnomatematika pada Motif Batik Lebak Dilihat Dari Sisi Nilai Filosofi dan Konsep Matematis (Ethnomatic Exploration on Lebak Batik Motif Viewed From the Side of Philosophical Values and Mathematical Concepts). LEBESGUE, 1(1), 29–38. https://doi.org/10.46306/lb.v1i1.10

Martin, G. E. (1982). Transformation Geometry: An Introduction to Symmetry. https://doi.org/10.1007/978-1-4612-5680-9

Ningrum, N. S. (2020). Sidoluhur, Batik Pembawa Kemuliaan (Sidoluhur, Batik Brings Glory). Retrieved May 4, 2021, from semarangpos.com website: https://www.semarangpos.com/sidoluhur-batik-pembawa-kemuliaan-1044612#:~:text=Batik sidoluhur diciptakan oleh Ki,menciptakan batik sidoluhur untuk keturunannya.&text=Dirinya mencurahkan doa dan harapannya dengan membatik.

Powell, A. B. (2009). Respecting mathematical diversity: An ethnomathematical perspective / Respeitando a diversidade matemática: uma perspectiva etnomatemática. Acta Scientiae, 11(2), 39–52.

Prahmana, R. C. I., & Ubiratan, D. (2020). Learning Geometry and Values From Patterns: Ethnomathematics on The Batik Patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11,(3), 439–456. https://doi.org/https://doi.org/10.22342/jme.11.3.12949.439-456

Putra, R. Y., Wijayanto, Z., & Widodo, S. A. (2020). Ethnomathematics: Soko Tunggal Mosque For Geometry 2D Learning. Jurnal Riset Pendidikan Dan Inovasi Pembelajaran Matematika, 4(1), 10–22. Retrieved from journal.unesa.ac.id/index.php/jrpipm

Retnawati, H. (2016). Proving Content Validity of Self-Regulated learning Scale (The Comparison of Aiken Index and Expanded Gregory Index). Research and Evaluation in Education, 2(2), 155–164. https://doi.org/http://dx.doi.org/10.21831/reid.v2i2.11029

Rubenstein, R., & Schwartz, R. (1999). The Roots of the Branches of Mathematics. Math Horizons, 6(3), 18–20. https://doi.org/10.1080/10724117.1999.11975091

Samijo, S., & Yohanie, D. D. (2017). Pengaruh model pembelajaran kontekstual berbasis etnomatematika pada pola batik tenun (ATBM) khas Kota Kediri terhadap kemampuan refleksi dan simetri mahasiswa semester 2 Prodi Pendidikan Matematika UNP Kediri (The influence of the ethnomatematics-based c. Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah Di Bidang Pendidikan Matematika. https://doi.org/10.29407/jmen.v3i2.11975

Setyawan, F., Kristanto, Y. D., & Ishartono, N. (2018). Preparing In-Service Teacher Using Dynamic Geometry Software. International Journal of Engineering & Technology, 7(4.30), 367. https://doi.org/10.14419/ijet.v7i4.30.22317

Smith, J. T. (2000). Methods of geometry. Retrieved from https://www.wiley.com/en-us/Methods+of+Geometry-p-9781118031032

Sudirman, S., Son, A. L., & Rosyadi, R. (2018). Penggunaan Etnomatematika Pada Batik Paoman Dalam Pembelajaran Geomteri Bidang di Sekolah Dasar (The use of ethnomatematics in Paoman batik in field geography learning in elementary schools). IndoMath: Indonesia Mathematics Education. https://doi.org/10.30738/indomath.v1i1.2093

Suprayo, T., Noto, M. S., & Subroto, T. (2019). Ethnomathematics exploration on units and calculus within a village farmer community. Journal of Physics: Conference Series, 1188(1). https://doi.org/10.1088/1742-6596/1188/1/012104

Sutama. (2019). Metode Penelitian Pendidikan Kuantitatif, Kualitatif, PTK, Mix Method, R&D (Quantitative Educational Research Methods, Qualitative, CAR, Mix Method, R & D). Surakarta: Jasmine.

Taufiqoh, B. R., Nurdevi, I., & Khotimah, K. (2018). Batik Sebagai Warisan Budaya Indonesia (Batik as Indonesian Cultural Heritage). Seminar Nasional Bahasa Dan Sastra, 58–65. Retrieved from http://research-report.umm.ac.id/index.php/SENASBASA/article/view/2220

Tavenner, E. (1933). Iynx and rhombus. Transactions and Proceedings of the American Philological Association, 109–127. https://doi.org/https://doi.org/10.2307/283161

Tullock, G. (1997). Where is the Rectangle? Public Choice, 91(2), 149–159. Retrieved from https://www.jstor.org/stable/30024211?seq=1

UNESCO. (2009). Indonesia Batik. Retrieved May 7, 2021, from Cultural Heritage of Humanity website: https://ich.unesco.org/en/RL/indonesian-batik-00170

Yiu, P. (2002). Introduction to the Geometry. Retrieved from http://math.fau.edu/Yiu/GeometryNotes020402.pdf




DOI: http://dx.doi.org/10.12928/ijeme.v5i2.20660

Article Metrics

Abstract view : 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Naufal Ishartono, Dewi Ayu Ningtyas

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


International Journal on Emerging Mathematics Education
Kampus 2 Universitas Ahmad Dahlan
Jalan Pramuka No. 42, Pandeyan, Umbulharjo, Yogyakarta - 55161
Telp. (0274) 563515, ext. 4902; Fax. (0274) 564604
Email: ijeme@uad.ac.id


p-ISSN: 2549-4996 | e-ISSN: 2548-5806


This work is licensed under a Creative Commons Attribution 4.0 International License

View IJEME's Stats