Bio-oil from Oil Palm Shell Pyrolysis as Renewable Energy: A Review
DOI:
https://doi.org/10.26555/chemica.v9i2.22355Keywords:
Bio-oil, Oil palm shell, Pyrolysis, Renewable energy, UpgradingAbstract
Oil palm shell (OPS) is biomass with high carbon and hydrogen content, so it has the potential to produce renewable energy through the thermochemical method. Pyrolysis is a relatively inexpensive thermochemical method that continuously converts biomass into valuable gas, bio-oil, and char products. Bio-oil is used directly to fuel boilers and furnaces or to produce fuel oil. This article reviews the pyrolysis process of biomass from oil palm shells, discussing the operating parameters that influence the pyrolysis process and the method of upgrading bio-oil. This review shows a relationship between biomass composition (cellulose, hemicellulose, and lignin) and bio-oil yield. The water content in the raw material needs to be controlled at around 10%. The optimum particle size is closely related to the biomass's natural structure and reactor type. The higher the ash and fixed carbon content, the lower the bio-oil yield. The optimum temperature for pyrolysis is between 450-550 ºC. A high heating rate will increase the decomposition of biomass into bio-oil. Particle size and reactor type strongly influence feed rate, residence time, and reaction time. A fluidized bed reactor gives the highest bio-oil yield. Using plastic in co-pyrolysis and catalyst increases the heating value and decreases the oxygenated content.References
Tim Sekretaris Jenderal Dewan Energi Nasional, “Indonesia Energy Out Look 2019,†J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
E. Hilmawan and A. Sugiyono, OUTLOOK ENERGI INDONESIA 2020 Dampak Pandemi COVID-19 terhadap Sektor Energi di Indonesia, no. August. 2020.
I. M. Rajendra, I. N. S. Winaya, A. Ghurri, and I. K. G. Wirawan, “Pyrolysis study of coconut leaf’s biomass using thermogravimetric analysis,†IOP Conf. Ser. Mater. Sci. Eng., vol. 539, no. 1, 2019, doi: 10.1088/1757-899X/539/1/012017.
A. Singh, K. S. Rawat, O. P. Nautiyal, and T. V. Chavdal, “Biomass To Fuel: Conversion Techniques,†Energy Resour. Dev. Harvest. Manag., no. September, pp. 155–194, 2016.
X. Hu and M. Gholizadeh, “Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage,†J. Energy Chem., vol. 39, no. x, pp. 109–143, 2019, doi: 10.1016/j.jechem.2019.01.024.
L. Dai et al., “Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production : A state-of-the-art review,†Renew. Sustain. Energy Rev., vol. 107, no. February, pp. 20–36, 2019, doi: 10.1016/j.rser.2019.02.015.
R. K. Ahmad, S. A. Sulaiman, M. Inayat, and H. A. Umar, “Effects of Process Conditions on Calorific Value and Yield of Charcoal Produced from Pyrolysis of Coconut Shells Effects of Process Conditions on Calorific Value and Yield of Charcoal Produced from Pyrolysis of Coconut Shells,†no. September, 2020, doi: 10.1007/978-981-15-5753-8.
B. Subiyanto, H. Basri, L. N. Sari, and Y. Rosalita, “Komponen Kimia Cangkang Sawit ( Elaeis guineensis Jacq .) dan Pengaruhnya terhadap Sifat Beton Ringan Chemical Components of Oil Palm ( Elaeis guineensis Jacq .) Shell and Its Effect on Light Concrete Performance,†vol. 5, no. 4, 2007.
D. I. Yogyakarta, “Produksi Kelapa Sawit Menurut Provinsi di Indonesia , 2017-2021 Palm Oil Production by Province in Indonesia , 2017-2021,†vol. 2021, p. 2021, 2021.
H. Chowdhury and B. Loganathan, “Third-generation biofuels from microalgae: a review,†Curr. Opin. Green Sustain. Chem., vol. 20, pp. 39–44, 2019, doi: 10.1016/j.cogsc.2019.09.003.
M. Asadullah, N. Suhada, A. Rasid, S. Aishah, S. A. Kadir, and A. Azdarpour, “Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell,†Biomass and Bioenergy, vol. 59, pp. 316–324, 2013, doi: 10.1016/j.biombioe.2013.08.037.
F. Abnisa and W. M. A. Wan Daud, “A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil,†Energy Convers. Manag., vol. 87, pp. 71–85, 2014, doi: 10.1016/j.enconman.2014.07.007.
P. A. Meyer, L. J. Snowden-Swan, S. B. Jones, K. G. Rappé, and D. S. Hartley, “The effect of feedstock composition on fast pyrolysis and upgrading to transportation fuels: Techno-economic analysis and greenhouse gas life cycle analysis,†Fuel, vol. 259, no. March 2019, p. 116218, 2020, doi: 10.1016/j.fuel.2019.116218.
P. A. Meyer, L. J. Snowden-Swan, S. B. Jones, K. G. Rappé, and D. S. Hartley, “The effect of feedstock composition on fast pyrolysis and upgrading to transportation fuels: Techno-economic analysis and greenhouse gas life cycle analysis,†Fuel, vol. 259, no. March 2019, p. 116218, 2020, doi: 10.1016/j.fuel.2019.116218.
T. A. Khan, A. S. Saud, S. S. Jamari, M. H. A. Rahim, J. W. Park, and H. J. Kim, “Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review,†Biomass and Bioenergy, vol. 130, no. October 2018, p. 105384, 2019, doi: 10.1016/j.biombioe.2019.105384.
F. X. Collard and J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,†Renew. Sustain. Energy Rev., vol. 38, pp. 594–608, 2014, doi: 10.1016/j.rser.2014.06.013.
G. Chang, P. Shi, Y. Guo, L. Wang, and C. Wang, “Enhanced pyrolysis of palm kernel shell wastes to bio-based chemicals and syngas using red mud as an additive,†J. Clean. Prod., vol. 272, p. 122847, 2020, doi: 10.1016/j.jclepro.2020.122847.
T. Damartzis and A. Zabaniotou, “Thermochemical conversion of biomass to second generation biofuels through integrated process design — A review,†vol. 15, pp. 366–378, 2011, doi: 10.1016/j.rser.2010.08.003.
O. Azeta, A. O. Ayeni, O. Agboola, and F. B. Elehinafe, “A review on the sustainable energy generation from the pyrolysis of coconut biomass ✩,†Sci. African, vol. 13, p. e00909, 2021, doi: 10.1016/j.sciaf.2021.e00909.
L. Melia et al., “Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies : A review,†Carbon Resour. Convers., vol. 4, no. June, pp. 239–250, 2021, doi: 10.1016/j.crcon.2021.10.002.
L. Melia et al., “Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies : A review,†Carbon Resour. Convers., vol. 4, no. June, pp. 239–250, 2021, doi: 10.1016/j.crcon.2021.10.002.
T. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,†Renew. Sustain. Energy Rev., vol. 57, pp. 1126–1140, 2016, doi: 10.1016/j.rser.2015.12.185.
Y. K N et al., “Lignocellulosic biomass-based pyrolysis: A comprehensive review,†Chemosphere, vol. 286, no. P2, p. 131824, 2022, doi: 10.1016/j.chemosphere.2021.131824.
S. D. Stefanidis, K. G. Kalogiannis, E. F. Iliopoulou, C. M. Michailof, P. A. Pilavachi, and A. A. Lappas, “Journal of Analytical and Applied Pyrolysis A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose , hemicellulose and lignin,†J. Anal. Appl. Pyrolysis, vol. 105, pp. 143–150, 2014, doi: 10.1016/j.jaap.2013.10.013.
Y. K N et al., “Lignocellulosic biomass-based pyrolysis: A comprehensive review,†Chemosphere, vol. 286, no. P2, p. 131824, 2022, doi: 10.1016/j.chemosphere.2021.131824.
S. D. Stefanidis, K. G. Kalogiannis, E. F. Iliopoulou, C. M. Michailof, P. A. Pilavachi, and A. A. Lappas, “Journal of Analytical and Applied Pyrolysis A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose , hemicellulose and lignin,†J. Anal. Appl. Pyrolysis, vol. 105, pp. 143–150, 2014, doi: 10.1016/j.jaap.2013.10.013.
G. Chang et al., “The lignin pyrolysis composition and pyrolysis products of palm kernel shell , wheat straw , and pine sawdust,†Energy Convers. Manag., vol. 124, pp. 587–597, 2016, doi: 10.1016/j.enconman.2016.07.038.
S. Papari and K. Hawboldt, “A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models,†Renew. Sustain. Energy Rev., vol. 52, pp. 1580–1595, 2015, doi: 10.1016/j.rser.2015.07.191.
X. J. Lee, L. Y. Lee, B. Y. Z. Hiew, S. Gan, S. Thangalazhy-Gopakumar, and H. K. Ng, “Valorisation of oil palm wastes into high yield and energy content biochars via slow pyrolysis: Multivariate process optimisation and combustion kinetic studies,†Mater. Sci. Energy Technol., vol. 3, pp. 601–610, 2020, doi: 10.1016/j.mset.2020.06.006.
T. Matamba, A. Tahmasebi, S. Khoshk Rish, and J. Yu, “Promotion Effects of Pressure on Polycyclic Aromatic Hydrocarbons and H2 Formation during Flash Pyrolysis of Palm Kernel Shell,†Energy & Fuels, vol. 34, no. 3, pp. 3346–3356, Mar. 2020, doi: 10.1021/acs.energyfuels.9b04409.
Z. Liu, Y. Zhang, and Z. Li, “Cellulose-lignin and Xylan-lignin Interactions on the Formation of Lignin-derived Phenols in Pyrolysis Oil,†no. March 2018, 2017, doi: 10.15376/biores.12.3.4958-4971.
S. Wang, X. Guo, K. Wang, and Z. Luo, “Journal of Analytical and Applied Pyrolysis Influence of the interaction of components on the pyrolysis behavior of biomass,†J. Anal. Appl. Pyrolysis, vol. 91, no. 1, pp. 183–189, 2011, doi: 10.1016/j.jaap.2011.02.006.
K. M. Qureshi et al., “Journal of Analytical and Applied Pyrolysis A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil,†J. Anal. Appl. Pyrolysis, vol. 131, no. December 2017, pp. 52–75, 2018, doi: 10.1016/j.jaap.2018.02.010.
M. Danish, M. Naqvi, U. Farooq, and S. Naqvi, “Characterization of South Asian Agricultural Residues for Potential Utilization in Future ‘ energy mix ’ Characterization of South Asian agricultural residues for potential utilization in future ‘ energy mix ,’†Energy Procedia, vol. 75, no. August, pp. 2974–2980, 2015, doi: 10.1016/j.egypro.2015.07.604.
J. Akhtar, N. Saidina, and P. Wood, “A review on operating parameters for optimum liquid oil yield in biomass pyrolysis,†Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5101–5109, 2012, doi: 10.1016/j.rser.2012.05.033.
R. Omar, A. Idris, R. Yunus, K. Khalid, and M. I. A. Isma, “Characterization of empty fruit bunch for microwave-assisted pyrolysis,†Fuel, vol. 90, no. 4, pp. 1536–1544, 2011, doi: 10.1016/j.fuel.2011.01.023.
F. Abnisa, A. Arami-niya, W. M. A. W. Daud, J. N. Sahu, and I. M. Noor, “Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis,†Energy Convers. Manag., vol. 76, pp. 1073–1082, 2013, doi: 10.1016/j.enconman.2013.08.038.
K. M. Qureshi, A. N. Kay Lup, S. Khan, F. Abnisa, and W. M. A. Wan Daud, “Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: Effect of particle size, pyrolysis time and vapor residence time,†Clean. Eng. Technol., vol. 4, p. 100174, 2021, doi: 10.1016/j.clet.2021.100174.
R. Venderbosch and W. Prins, “Fast pyrolysis technology development,†Biofuels, Bioprod. Biorefining, vol. 4, pp. 178–208, Mar. 2010, doi: 10.1002/bbb.205.
C. E. M. Braza and P. M. Crnkovic, “Physical – Chemical Characterization of Biomass Samples for Application in Pyrolysis Process,†Chem. Eng. Trans., vol. 37, pp. 523–528, Jan. 2014, doi: 10.3303/CET1437088.
S. Wu, C. Chang, Y. Chang, and H. Wan, “Comparison of oil-tea shell and Douglas-fir sawdust for the production of bio-oils and chars in a fluidized-bed fast pyrolysis system,†FUEL, vol. 175, pp. 57–63, 2016, doi: 10.1016/j.fuel.2016.02.008.
M. Bartoli, L. Rosi, A. Giovannelli, P. Frediani, and M. Frediani, “Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor,†J. Anal. Appl. Pyrolysis, vol. 122, pp. 479–489, 2016, doi: 10.1016/j.jaap.2016.10.016.
P. Ghorbannezhad, F. Kool, H. Rudi, and S. Ceylan, “Sustainable production of value-added products from fast pyrolysis of palm shell residue in tandem micro-reactor and pilot plant,†Renew. Energy, vol. 145, pp. 663–670, 2020, doi: 10.1016/j.renene.2019.06.063.
J. E. Omoriyekomwan, A. Tahmasebi, and J. Yu, “Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell,†Bioresour. Technol., vol. 207, pp. 188–196, May 2016, doi: 10.1016/j.biortech.2016.02.002.
T. Anh, H. Vu, Q. Khanh, B. Kwon, S. Kim, and J. Kim, “Lumped-kinetic modeling and experiments on co-pyrolysis of palm kernel cake with polystyrene using a closed-tubing reactor to upgrade pyrolysis products,†Energy Convers. Manag., vol. 249, no. September, p. 114879, 2021, doi: 10.1016/j.enconman.2021.114879.
Q. Niu et al., “Journal of Analytical and Applied Pyrolysis Exploring catalytic pyrolysis of Palm Shell over HZSM-5 by gas Chromatography / mass spectrometry and photoionization mass spectrometry,†J. Anal. Appl. Pyrolysis, vol. 152, no. October, p. 104946, 2020, doi: 10.1016/j.jaap.2020.104946.
S. Won, B. Seok, and D. Hyun, “Bioresource Technology Catalytic pyrolysis of palm kernel shell waste in a fluidized bed,†Bioresour. Technol., vol. 167, pp. 425–432, 2014, doi: 10.1016/j.biortech.2014.06.050.
C. K. Wai, S. Yusup, N. S. Muda, N. Zaheera, and A. Kapor, “Comparative Study of H-ZSM 5 Zeolite and Graphite Nanofiber ( GNF ) in Catalytic Pyrolysis of Oil Palm Fronds ( OPF ),†vol. 5, no. 3, pp. 14–20, 2016.
H. Shafaghat, H. Won, Y. Fai, D. Oh, and J. Jae, “In-situ and ex-situ catalytic pyrolysis / co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts,†Chem. Eng. J., vol. 366, no. February, pp. 330–338, 2019, doi: 10.1016/j.cej.2019.02.055.
D. Ro et al., “Bench scale catalytic fast pyrolysis of empty fruit bunches over low cost catalysts and HZSM-5 using a fi xed bed reactor,†J. Clean. Prod., vol. 176, pp. 298–303, 2018, doi: 10.1016/j.jclepro.2017.12.075.
Y. Yee, S. Thangalazhy-gopakumar, H. Kiat, L. Yee, and S. Gan, “Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber,†J.Environ.Manage., vol. 247, no. June, pp. 38–45, 2019, doi: 10.1016/j.jenvman.2019.06.049.
M. Auta, L. M. Ern, and B. H. Hameed, “Journal of Analytical and Applied Pyrolysis Fixed-bed catalytic and non-catalytic empty fruit bunch biomass pyrolysis,†J. Anal. Appl. Pyrolysis, vol. 107, pp. 67–72, 2014, doi: 10.1016/j.jaap.2014.02.004.
S. Jamilatun, A. Budiman, H. Anggorowati, A. Yuliestyan, and Y. Surya, “Ex-Situ Catalytic Upgrading of Spirulina platensis Residue Oil Using Silica Alumina Catalyst,†vol. 9, no. 4, 2019.
C. Geun, X. Meng, Y. Pu, and A. J. Ragauskas, “Bioresource Technology The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies : A comprehensive review,†Bioresour. Technol., vol. 301, no. November 2019, p. 122784, 2020, doi: 10.1016/j.biortech.2020.122784.
C. Geun, X. Meng, Y. Pu, and A. J. Ragauskas, “Bioresource Technology The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies : A comprehensive review,†Bioresour. Technol., vol. 301, no. November 2019, p. 122784, 2020, doi: 10.1016/j.biortech.2020.122784.
M. Song, Z. Zhong, and J. Dai, “Journal of Analytical and Applied Pyrolysis Different solid acid catalysts influence on properties and chemical composition change of upgrading bio-oil,†J. Anal. Appl. Pyrolysis, vol. 89, no. 2, pp. 166–170, 2010, doi: 10.1016/j.jaap.2010.07.007.
Downloads
Published
Issue
Section
License
Chemica: Jurnal Teknik Kimia allows readers to read, download, copy, distribute, print, search, or link to its articles' full texts and allows readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions
- Authors are allowed to archive their submitted articles in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.
Â