Bioprocess Potentials of Squalene from Thraustochytrids Microalgae for Nutraceuticals in New Normal Era Isolated from Indonesian Mangroves: A Review

Authors

  • Suhendra Suhendra Ahmad Dahlan University
  • Tresya Pantoiyo Ahmad Dahlan University
  • Sarah Fazlia Ahmad Dahlan University
  • Endah Sulistiawati Ahmad Dahlan University
  • Rachma Tia Evitasari Ahmad Dahlan University

DOI:

https://doi.org/10.26555/chemica.v8i1.19121

Keywords:

Squalene, Thraustochytrids, Microalgae, Mangrove

Abstract

The covid-19 pandemic has been increasing people's awareness of good eating habits and consumption to maintain their health. Accordingly, the choice shifted more to consume nutraceutical and functional food to provide a beneficial impact. One of the essential and attractive nutraceuticals is squalene (C30H50). Squalene is a precursor for biosynthesis in all human steroids and has a long history as an essential compound in the pharmaceutical industry. A common source of this terpenoid comes from the liver oil of a deep-sea shark. However, the strategy for squalene production from liver sharks encountered environmental and political barriers due to strict nature protection regulations. The renewed scientific interest has found microalgae from the thraustochytrids family as a promising future source of squalene. Thraustochytrids is a group of Osmo-heterotrophic marine microalgae, which can be found commonly in mangrove are, has recently gained increased attention owing to its promising biotechnological potentials. As the country with the largest mangrove forest globally, Indonesia has the highest biodiversity potentials of Thraustochytrids. Unfortunately, the study on the potential of bioprocess technology using Thraustochytrids microalgae from Indonesian mangrove forests for squalene production has received less attention from researchers. Therefore, this paper presents Thraustochytrids' potential from Indonesian mangrove forests as a sustainable source of squalene production that can replace raw material from shark liver oil. This paper summarizes all selected strains used in the previous study and their operating parameters. Based on our review study, the most productive Thraustochytrid producing squalene comes from the Aurantiochytrium sp. 18W-13a–1, which operated in a temperature-controlled reciprocal 500 mL shaker of Sakaguchi flask (25 °C, 100 strokes min − 1,70 mm amplitude) and used nutrients of 2.0% glucose, 1.0% tryptone, 0.5 g /l yeast, and 50% artificial seawater (ASW). Compared to squalene from other sources (yeast, bacteria, and plants), Thraustochytrid can yield more squalene. Bioprocess engineering aspects and the general uses of squalene are also presented, including the notable developments in the adjuvant vaccine of Covid-19, anti-aging substance, and anti-cancer applications. 

Author Biographies

Suhendra Suhendra, Ahmad Dahlan University

Department of Chemical Engineering

Tresya Pantoiyo, Ahmad Dahlan University

Department of Chemical Engineering

Sarah Fazlia, Ahmad Dahlan University

Department of Chemical Engineering

Endah Sulistiawati, Ahmad Dahlan University

Department of Chemical Engineering

Rachma Tia Evitasari, Ahmad Dahlan University

Department of Chemical Engineering

References

D. Pradhan, P. Biswasroy, G. Ghosh, and G. Rath, “REVIEW ARTICLE A Review of Current Interventions for COVID-19 Prevention,†Arch. Med. Res., vol. 1, 2020.

R. Djalante et al., “Progress in Disaster Science Review and analysis of current responses to COVID-19 in Indonesia : Period of January to March 2020 ☆,†vol. 6, 2020.

Y. Liu, R. Kuo, and S. Shih, “ScienceDirect COVID-19 : The first documented coronavirus pandemic in history,†Biomed. J., no. xxxx, pp. 1–6, 2020.

F. Hemmati, S. Saedi, M. Hemmati-dinarvand, and M. Zarei, “Mysterious Virus : A Review on Behavior and Treatment Approaches of the Novel Coronavirus , 2019-nCoV,†Arch. Med. Res., 2020.

S. Hamid, M. Y. Mir, and G. K. Rohela, “Novel coronavirus disease ( COVID-19 ): a pandemic ( epidemiology , pathogenesis and potential therapeutics ),†New Microbes New Infect., vol. 35, p. 100679, 2020.

M. Zhao, M. Wang, J. Zhang, J. Ye, and Y. Xu, “Biomedicine & Pharmacotherapy Advances in the relationship between coronavirus infection and cardiovascular diseases,†vol. 127, no. March, 2020.

P. Cao, S. Wu, T. Wu, Y. Deng, Q. Zhang, and K. Wang, “The important role of polysaccharides from a traditional Chinese medicine- Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic,†Carbohydr. Polym., vol. 240, no. April, p. 116346, 2020.

J. Weng, “Plant Solutions for the COVID-19 Pandemic and Beyond: Historical Reflections and Future Perspectives,†Mol. Plant, 2020.

T. Capell, R. M. Twyman, V. Armario-najera, J. K. Ma, S. Schillberg, and P. Christou, “Potential Applications of Plant Biotechnology against SARS-CoV-2,†Trends Plant Sci., pp. 1–9, 2020.

J. S. Mani et al., “Natural product-derived phytochemicals as potential agents against coronaviruses : A review,†Virus Res., vol. 284, no. April, p. 197989, 2020.

Y. Impact, “The Fight to Replace Shark-Based Vaccine Ingredients With Sustainable , Plant-Based Sources,†pp. 1–6, 2020.

H. Nazih and J. Bard, Microalgae in Human Health : Interest as a Functional Food. Elsevier Inc., 2018.

H. N. Bhilwade et al., “The Adjuvant Effect of Squalene , an Active Ingredient of Functional Foods , on Doxorubicin- Treated Allograft Mice The Adjuvant Effect of Squalene , an Active Ingredient of Functional Foods ,†Nutr. Cancer, vol. 0, no. 0, pp. 1–12, 2019.

T. Casagrande et al., “Microalgae biomass intake positively modulates serum lipid profile and antioxidant status,†J. Funct. Foods, vol. 58, no. April, pp. 11–20, 2019.

A. Maria et al., “Technological trends and market perspectives for production of microbial oils rich in omega-3,†Crit. Rev. Biotechnol., vol. 0, no. 0, p. 000, 2016.

K. L. Low, A. Idris, and N. M. Yusof, “Novel protocol optimized for microalgae lutein used as food additives,†Food Chem., p. 125631, 2019.

H. N. Bhilwade, N. Tatewaki, H. Nishida, and T. Konishi, “Squalene as Novel Food Factor,†pp. 875–880, 2010.

H. M. Dionisi, M. Lozada, and N. L. Olivera, “Bioprospection of marine microorganisms : biotechnological applications and methods,†pp. 49–60, 2012.

S. Bellou, I. E. Triantaphyllidou, D. Aggeli, A. M. Elazzazy, M. N. Baeshen, and G. Aggelis, “Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content,†Curr. Opin. Biotechnol., vol. 37, pp. 24–35, 2016.

A. Hauvermale, J. Kuner, B. Rosenzweig, D. Guerra, S. Diltz, and J. G. Metz, “Fatty Acid Production in Schizochytrium sp .: Involvement of a Polyunsaturated Fatty Acid Synthase and a Type I Fatty Acid Synthase,†vol. 41, no. 8, pp. 739–747, 2006.

M. Venegas-calerón, O. Sayanova, and J. A. Napier, “Progress in Lipid Research An alternative to fish oils : Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids,†Prog. Lipid Res., vol. 49, no. 2, pp. 108–119, 2010.

E. M. Van Schothorst et al., “Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet,†vol. 11, pp. 1–11, 2009.

N. Gohil, G. Bhattacharjee, K. Khambhati, D. Braddick, and V. Singh, “Engineering strategies in microorganisms for the enhanced production of squalene: Advances, challenges and opportunities,†Front. Bioeng. Biotechnol., vol. 7, no. MAR, pp. 1–24, 2019.

O. Popa, N. Elena, I. Popa, S. Nit, and C. E. Dinu-pârvu, “Methods for Obtaining and Determination of Squalene from Natural Sources,†vol. 2015, 2015.

F. E. Güneş, “Medical Use of Squalene as a Natural Antioxidant,†no. January, 2014.

M. Tsujimoto, “A highly unsaturated hydrocarbon in shark liver oil,†Ind. Eng. Chem., vol. 8, no. 10, pp. 889–896, 1916.

J. F. Remme and W. E. Larsen, “Bioactive lipids in deep-sea sharks,†no. July, 2005.

B. M. Cotterill, “COVID-19 vaccine might require compounds from shark liver,†pp. 1–7, 2020.

L. News, “Could Mass-Producing a COVID-19 Vaccine Kill Half a Million Sharks ?,†2020.

P. K. Updates, “Stop Using Sharks in COVID-19 Vaccine - Use EXISTING Sustainable Options,†pp. 1–6, 2020.

B. Y. J. Meneguzzi, “Why a COVID-19 vaccine could further imperil deep- sea sharks,†pp. 12–15, 2020.

M. P. In, “On the hunt for alternatives to shark squalene for vaccines,†pp. 1–7, 2020.

W. Xu, X. Ma, and Y. Wang, “Production of squalene by microbes: an update,†World J. Microbiol. Biotechnol., vol. 32, no. 12, 2016.

M. R. Miller, P. D. Nichols, and C. G. Carter, “Replacement of fish oil with thraustochytrid Schizochytrium sp . L oil in Atlantic salmon parr ( Salmo salar L ) diets,†vol. 148, pp. 382–392, 2007.

M. Otagiri, A. Khalid, S. Moriya, and H. Osada, “Novel squalene-producing thraustochytrids found in mangrove water,†Biosci. Biotechnol. Biochem., vol. 8451, no. August, pp. 1–4, 2017.

I. M. Aasen et al., “Thraustochytrids as production organisms for docosahexaenoic acid ( DHA ), squalene , and carotenoids,†Appl. Microbiol. Biotechnol., no. 1, pp. 4309–4321, 2016.

K. KAYA, A. NAKAZAWA, H. MATSUURA, D. HONDA, I. INOUYE, and M. M. WATANABE, “ Thraustochytrid Aurantiochytrium sp. 18W-13a Accummulates High Amounts of Squalene ,†Biosci. Biotechnol. Biochem., vol. 75, no. 11, pp. 2246–2248, 2011.

A. Saengwong, W. Yongmanitchai, and D. Chonudomkul, “Screening and Optimization of Squalene Production from Microalgae Aurantiochytrium sp .,†vol. 45, no. 2, pp. 680–691, 2018.

W. K. Hong et al., “Characterization of a squalene synthase from the Thraustochytrid microalga Aurantiochytrium sp. KRS101,†J. Microbiol. Biotechnol., vol. 23, no. 6, pp. 759–765, 2013.

A. Zhang, Y. Xie, Y. He, W. Wang, B. Sen, and G. Wang, “Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes,†Bioresour. Technol., vol. 287, no. May, p. 121415, 2019.

C. Darwin, S. Raghukumar, and O. M. Ecosystems, “Origin and Evolution of Marine Fungi,†pp. 293–307, 2017.

S. Raghukumar, B. O. Division, and D. Paula, “Marine Biology,†vol. 169, pp. 165–169, 1992.

S. Raghukumar, V. Sathe-pathak, and S. Sharma, “Thraustochytrid and fungal component of marine detritus . 111 . Field studies on decomposition of leaves of the mangrove Rhizophora apicula ta,†vol. 9, no. Moss 1986, pp. 117–125, 1995.

M. Spanova and G. Daum, “Squalene - biochemistry, molecular biology, process biotechnology, and applications,†Eur. J. Lipid Sci. Technol., vol. 113, no. 11, pp. 1299–1320, 2011.

A. Rani, R. Meghana, and A. Kush, “Squalene production in the cell suspension cultures of Indian sandalwood (Santalum album L.) in shake flasks and air lift bioreactor,†Plant Cell. Tissue Organ Cult., vol. 135, no. 1, pp. 155–167, 2018.

National Center for National Center for Biotechnology Information Biotechnology Information, “PubChem Compound Summary for CID 638072, Squalene,†2020. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Squalene. [Accessed: 15-Nov-2020].

N. I. Ibrahim, S. Fairus, M. S. Zulfarina, and I. N. Mohamed, “The Efficacy of Squalene in Cardiovascular Disease Risk †A Systematic Review,†2020.

World Health Organization, “Safety of squalene,†2020. [Online]. Available: https://www.who.int/vaccine_safety/committee/topics/adjuvants/squalene/Jun_2006/en/. [Accessed: 10-Oct-2020].

A. Di Pasquale, S. Preiss, and A. Fleming, “Vaccine Adjuvants : from 1920 to 2015 and Beyond,†pp. 320–343, 2015.

C. B. Fox, “Squalene Emulsions for Parenteral Vaccine and Drug Delivery,†no. Figure 1, pp. 3286–3312, 2009.

N. Nicolaides, “Skin lipids: Their biochemical uniqueness,†Science (80-. )., vol. 186, no. 4158, pp. 19–26, 1974.

T. Nikkari, P. H. Schreibman, and E. H. Ahrens, “In vivo studies of sterol and squalene secretion by human skin,†J. Lipid Res., vol. 15, no. 6, pp. 563–573, 1974.

A. L. Ronco and E. de Stéfani, “Squalene: A multi-task link in the crossroads of cancer and aging,†Funct. Foods Heal. Dis., vol. 3, no. 12, pp. 462–476, 2013.

T. Rosales-Garcia, C. Jimenez-Martinez, and G. Davila-Ortiz, “Squalene Extraction: Biological Sources and Extraction Methods,†Int. J. Environ. Agric. Biotechnol., vol. 2, no. 4, pp. 1662–1670, 2017.

F. Mantzouridou and M. Z. Tsimidou, “Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6,†FEMS Yeast Res., vol. 10, no. 6, pp. 699–707, 2010.

P. Bhattacharjee, V. B. Shukla, R. S. Singhal, and P. R. Kulkarni, “Studies on fermentative production of squalene,†World J. Microbiol. Biotechnol., vol. 17, no. 8, pp. 811–816, 2001.

Y. Jiang, K. W. Fan, R. T. Y. Wong, and F. Chen, “Fatty Acid Composition and Squalene Content of the Marine Microalga Schizochytrium mangrovei,†J. Agric. Food Chem., vol. 52, no. 5, pp. 1196–1200, 2004.

A. Nakazawa et al., “TLC screening of thraustochytrid strains for squalene production,†J. Appl. Phycol., vol. 26, no. 1, pp. 29–41, 2014.

S. . A. L. L. ( F. ) Bernard Pora , Wuhan ( CN ) ; Yun Qian , Wuhan ( CN ) ; Bernard Caulier , Fretin ( FR ) ; Serge Comini , La Gorgue ( FR ) ; Philippe Looten , Lomme ( FR ) ; Laurent Segueilha, “Method For The Preparation and Extraction of Squalene From Microalgae,†vol. 2, 2014.

and G. O. Claude Andinq, Roger D. Brandt, “Sterol Biosynthesis in Euglena gracilis Z. Sterol Precursors in Light-Grown and Dark-Grown Euglena gtacilis Z.,†Eur. J. Biochem, vol. 24, pp. 259–263, 1971.

E. Naziri, F. Mantzouridou, and M. Z. Tsimidou, “Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means,†J. Agric. Food Chem., vol. 59, no. 18, pp. 9980–9989, 2011.

I. Goldberg and I. Shechter, “Occurrence of squalene in methanol-grown bacteria,†J. Bacteriol., vol. 135, no. 2, pp. 717–720, 1978.

E. Drozdíková, M. Garaiová, Z. Csáky, M. Obernauerová, and I. Hapala, “Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity,†Lett. Appl. Microbiol., vol. 61, no. 1, pp. 77–84, 2015.

C. K. Lyon and R. Becker, “Extraction and refining of oil from amaranth seed,†J. Am. Oil Chem. Soc., vol. 64, no. 2, pp. 233–236, 1987.

S. Czaplicki, D. Ogrodowska, D. Derewiaka, M. Tańska, and R. Zadernowski, “Bioactive compounds in unsaponifiable fraction of oils from unconventional sources,†Eur. J. Lipid Sci. Technol., vol. 113, no. 12, pp. 1456–1464, 2011.

T. Gutfinger and A. Letan, “Studies of unsaponifiables in several vegetable oils,†Lipids, vol. 9, no. 9, pp. 658–663, 1974.

N. Frega, F. Bocci, and G. Lercker, “Direct gas chromatographic analysis of the unsaponifiable fraction of different oils with a polar capillary column,†J. Am. Oil Chem. Soc., vol. 69, no. 5, pp. 447–450, 1992.

N. Nenadis and M. Tsimidou, “Determination of squalene in olive oil using fractional crystallization for sample preparation,†JAOCS, J. Am. Oil Chem. Soc., vol. 79, no. 3, pp. 257–259, 2002.

G. Beltrán, M. E. Bucheli, M. P. Aguilera, A. Belaj, and A. Jimenez, “Squalene in virgin olive oil: Screening of variability in olive cultivars,†Eur. J. Lipid Sci. Technol., vol. 118, no. 8, pp. 1250–1253, 2016.

M. A. Lozano-Grande, S. Gorinstein, E. Espitia-Rangel, G. Dávila-Ortiz, and A. L. Martínez-Ayala, “Plant Sources, Extraction Methods, and Uses of Squalene,†Int. J. Agron., vol. 2018, 2018.

K. Paramasivan and S. Mutturi, “Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae,†J. Agric. Food Chem., vol. 65, no. 37, pp. 8162–8170, 2017.

“Genetic and bioprocess engineering to improve squalene production in Yarroâ€.pdf.†.

D. Joy, K. Yoneda, and I. Suzuki, “Genetic modi fi cation of the thraustochytrid Aurantiochytrium sp . 18W-13a for cellobiose utilization by secretory expression of β -glucosidase from Aspergillus aculeatus,†Algal Res., vol. 40, no. December 2018, p. 101503, 2019.

B. Pattanaik, E. Englund, N. Nolte, and P. Lindberg, “Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803,†Metab. Eng. Commun., vol. 10, no. February, p. e00125, 2020.

Y. Y. Huang et al., “Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism,†J. Biotechnol., vol. 281, no. February, pp. 106–114, 2018.

H. Sowani, A. Deshpande, V. Gupta, M. Kulkarni, and S. Zinjarde, “Biodegradation of squalene and n-hexadecane by Gordonia amicalis HS-11 with concomitant formation of biosurfactant and carotenoids,†Int. Biodeterior. Biodegrad., vol. 142, no. May, pp. 172–181, 2019.

Y. Kohno, Y. Egawa, S. Itoh, S. ichi Nagaoka, M. Takahashi, and K. Mukai, “Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol,†Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab., vol. 1256, no. 1, pp. 52–56, 1995.

Fatma Esra Gunes, “Medical use of squalene as a natural antioxidant,†J. Marmara Univ. Inst. Heal. Sci., no. January, p. 1, 2013.

R. Amarowicz, “Squalene: A natural antioxidant?,†Eur. J. Lipid Sci. Technol., vol. 111, no. 5, pp. 411–412, 2009.

S. K. Kim and F. Karadeniz, Biological Importance and Applications of Squalene and Squalane, 1st ed., vol. 65. Elsevier Inc., 2012.

Z. R. Huang, Y. K. Lin, and J. Y. Fang, “Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology,†Molecules, vol. 14, no. 1, pp. 540–554, 2009.

A. Aioi, T. Shimizu, and K. Kuriyama, “Effect of squalene on superoxide anion generation induced by a skin irritant, lauroylsarcosine,†Int. J. Pharm., vol. 113, no. 2, pp. 159–164, 1995.

A. Budiyanto et al., “Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice,†Carcinogenesis, vol. 21, no. 11, pp. 2085–2090, 2000.

T. J. Smith, “Squalene: Potential chemopreventive agent,†Expert Opin. Investig. Drugs, vol. 9, no. 8, pp. 1841–1848, 2000.

Z. Kopicová and S. Vavreinová, “Occurrence of squalene and cholesterol in various species of Czech freshwater fish,†Czech J. Food Sci., vol. 25, no. 4, pp. 195–201, 2007.

G. Del Giudice et al., “Vaccines with the MF59 adjuvant do not stimulate antibody responses against squalene,†Clin. Vaccine Immunol., vol. 13, no. 9, pp. 1010–1013, 2006.

A. Di Pasquale, S. Preiss, F. T. Da Silva, and N. Garçon, “Vaccine adjuvants: From 1920 to 2015 and beyond,†Vaccines, vol. 3, no. 2, pp. 320–343, 2015.

S. Ivanova, V. Tonchev, N. Yokoi, M. C. Yappert, D. Borchman, and G. A. Georgiev, “Surface properties of squalene/meibum films and NMR confirmation of squalene in tears,†Int. J. Mol. Sci., vol. 16, no. 9, pp. 21813–21831, 2015.

T. J. Smith, “Expert Opinion on Investigational Drugs Squalene : potential chemopreventive agent,†pp. 1841–1848, 2000.

G. Lippi, G. Targher, and M. Franchini, “European Journal of Internal Medicine Vaccination , squalene and anti-squalene antibodies : Facts or fi ction ?,†Eur. J. Intern. Med., vol. 21, no. 2, pp. 70–73, 2010.

L. Fossier Marchan, K. J. Lee Chang, P. D. Nichols, W. J. Mitchell, J. L. Polglase, and T. Gutierrez, “Taxonomy, ecology and biotechnological applications of thraustochytrids: A review,†Biotechnol. Adv., vol. 36, no. 1, pp. 26–46, 2018.

S. Raghukumar, “Ecology of the marine protists, the labyrinthulomycetes (thraustochytrids and labyrinthulids),†Eur. J. Protistol., vol. 38, no. 2, pp. 127–145, 2002.

P. Singh, Y. Liu, L. Li, and G. Wang, “Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats,†pp. 5789–5805, 2014.

B. B. Ellenbogen, S. Aaronson, S. Goldstein, and M. Belsky, “Polyunsaturated fatty acids of aquatic fungi: Possible phylogenetic significance,†Comp. Biochem. Physiol., vol. 29, no. 2, pp. 805–811, 1969.

C. Morabito et al., “The lipid metabolism in thraustochytrids,†Prog. Lipid Res., vol. 76, no. September, p. 101007, 2019.

A. Patel, U. Rova, P. Christakopoulos, and L. Matsakas, “Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates,†Biotechnol. Biofuels, vol. 12, no. 1, pp. 1–12, 2019.

M. H. Hoang et al., “Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process,†J. Biosci. Bioeng., vol. 118, no. 6, pp. 632–639, 2014.

C. J. Yue and Y. Jiang, “Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei,†Process Biochem., vol. 44, no. 8, pp. 923–927, 2009.

G. Chen et al., “Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp .,†N. Biotechnol., vol. 27, no. 4, pp. 382–389, 2010.

K. W. Fan, T. Aki, F. Chen, and Y. Jiang, “Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine,†World J. Microbiol. Biotechnol., vol. 26, no. 7, pp. 1303–1309, 2010.

A. Nakazawa et al., “Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production,†Bioresour. Technol., vol. 109, pp. 287–291, 2012.

A. Patel, S. Liefeldt, U. Rova, P. Christakopoulos, and L. Matsakas, “Co-production of DHA and squalene by thraustochytrid from forest biomass,†Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020.

A. Patel, U. Rova, P. Christakopoulos, and L. Matsakas, “Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate,†Sci. Total Environ., vol. 736, p. 139691, 2020.

X. M. Sun, L. J. Ren, X. J. Ji, S. L. Chen, D. S. Guo, and H. Huang, “Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis,†Bioresour. Technol., vol. 211, pp. 374–381, 2016.

J. Li et al., “The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynthesis in Schizochytrium sp. MYA 1381,†BMC Microbiol., vol. 19, no. 1, pp. 1–13, 2019.

K. Tong, H. Kong, P. Road, and H. Kong, “Fatty Acid Composition and Squalene Content of the Marine Microalga Schizochytrium mangrovei,†pp. 1196–1200, 2004.

K. Barang, “Squalene Omega 369 Minyak ikan Omega 369 jaga kesehatan Jantung 100 sofgel Informasi Pelapak,†pp. 1–4, 2020.

S. Omega, “SQUALENE Omega salmon,†pp. 1–5, 2020.

A. Nakazawa, Y. Kokubun, H. Matsuura, N. Yonezawa, and R. Kose, “TLC screening of thraustochytrid strains for squalene production,†pp. 29–41, 2014.

K. Kaya, A. Nakazawa, H. Matsuura, D. Honda, I. Inouye, and M. M. Watanabe, “Thraustochytrid Aurantiochytrium sp . 18W-13a Accummulates High Amounts of Squalene of Squalene,†vol. 8451, no. April, pp. 11–14, 2017.

S. Andre and L. Lille, “( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2014 / 0088201 A1,†vol. 1, no. 19, 2014.

W. (CN); Y. Q. Bernard Pora, F. Wuhan (CN); Bernard Caulier, L. G. (FR): (FR); Serge Comini, L. (FR); L. Philippe Looten, and S. A. L. L. (FR) Segueilha, “Method For The Preparation And Extraction Of Squalene From Microalgae,†vol. 1, no. 19, 2014.

A. W. Bunch and R. E. Harris, “The manipulation of micro-organisms for the production of secondary metabolites,†Biotechnol. Genet. Eng. Rev., vol. 4, no. 1, pp. 117–144, 1986.

V. Singh, D. Braddick, and P. K. Dhar, “Exploring the potential of genome editing CRISPR-Cas9 technology,†Gene, vol. 599, pp. 1–18, 2017.

V. Singh, N. Gohil, R. Ramírez García, D. Braddick, and C. K. Fofié, “Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations,†J. Cell. Biochem., vol. 119, no. 1, pp. 81–94, 2018.

M. H. Hoang et al., “Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process,†J. Biosci. Bioeng., vol. xx, no. xx, 2014.

A. Krs, “High shear-assisted solvent extraction of lipid from wet biomass of,†vol. 227, no. May, 2019.

B. A. Jackson, P. A. Bahri, and N. R. Moheimani, “Non-destructive extraction of lipids from Botryococcus braunii and its potential to reduce pond area and nutrient costs,†vol. 47, no. January, 2020.

C. Tzia, “LWT - Food Science and Technology Evaluation of ultrasound assisted and conventional methods for production of olive pomace oil enriched in sterols and squalene,†vol. 99, no. June 2018, pp. 209–216, 2019.

T. H. A., M. Rochak, and R. K. S. M. . Chandrasekhar Jampani, “Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis .pdf,†vol. 31, pp. 239–251, 2018.

“Squalene Market Size and Share _ Global Industry Report, 2016-2024.†.

G. V. Research, “Squalene Market Size, Share & Trends Analysis Report By Raw Material (Vegetable, Synthetic, Animal), By Application (Cosmetics, Pharmaceuticals), By Region, And Segment Forecasts, 2016 - 2024,†2016. .

Suhendra, “Isolation of Marine Microalgae,†2020. [Online]. Available: https://www.youtube.com/watch?v=91cvOZ1A4I8. [Accessed: 15-Oct-2020].

Downloads

Published

2021-06-24

Issue

Section

Articles