Simulation of Dispersion Potential and Fatality Percentage of SO2 and CO2 Flue Gas from Combustion of Coal in West Lombok Power Plant using Gaussian Model

Authors

  • Shafwan Amrullah Universitas Teknologi Sumbawa and Pusat Studi Terapan Keselamatan dan Kesehatan Kerja dan Lingkungan Universitas Teknologi Sumbawa
  • Cyrilla Oktaviananda Politeknik Katolik Mangunwijaya

DOI:

https://doi.org/10.26555/chemica.v7i2.17451

Keywords:

Air pollution, Coal-fired, Dispersion potential, Fatality percentage, Gauss model

Abstract

Combustion of coal in coal-fired power plants produces air pollution such as SO2, NOx, CO2, and Particulates. The Jeranjang power plant in West Lombok Regency uses 300,000 tons/year of coal to generate 75 MW of electricity. It can be a large potential for environmental pollution. This research aims to simulate the potential of SO2 and CO2 exhaust gas dispersion to the environment and the fatality percentage caused by burning the Jeranjang coal power plant using the Gauss Model. The research was conducted by a literature study and direct observation of PLTU Jeranjang. After that, in this research, the SO2 and CO2 concentration were calculated. At the end of the study, estimating the potential dispersion and fatality percentage by SO2 and CO2 gas was also calculated around the Jeranjang power plant. The results are SO2 dispersion with a dispersion mass of 0.145 kg/sec from a distance of 2,000 to 46,000 m increased from 1x10-45 to 1.9x10-5 ppm and decreased to 0 ppm. The fatality percentage generated is 0%. The CO2 dispersion potential into the environment without a mass of 12.378 kg/sec increases at a distance of 2,000 to 58,000 m, from a concentration of 2.7x10-65 to 0.00184 ppm. The CO2 concentration decreases to 0 ppm. The fatality percentage generated is 0%. The calculation of settlement dispersion around the PLTU Jeranjang can be safe from SO2 and CO2 dispersion, and the fatality percentage generated is 0%.

References

Haryadi, H. (2017). “Analisis swot dalam pengelolaan sumberdaya mineral dan batubara indonesia serta prospeknya dalam menghadapi masyarakat ekonomi asean (mea)â€, Jurnal Teknologi Mineral dan Batubara, 13, 1, 73-90J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

Suara NTB (2019). Pemprov NTB Desak Percepat Perbaikan PLTU Jeranjang, https://www.suarantb.com/ntb

Fisu, A.A, “Analisis kebutuhan fasilitas sisi laut pelabuhan terminal khusu PLTGU Lombokâ€, PENA TEKNIK: Jurnal Ilmu-Ilmu Teknik, 2018, 3, 2, 197-206.

Kabarbisnis (2019). PLTU berbahan bakar batubara dibangun di Lombok, https://www.kabarbisnis.com/

Yalçın, Erik, Sancar, S., “Relationships between coal-quality and organic-geochemical parameters: A case study of the Hafik coal deposits (Sivas Basin, Turkey)â€. International Journal Of Coal Geology, 105, 2013, 48-59.

Baqqy, L.A., Arias, G., Rachimoellah, M.,  Nenu, T,. “Pengeringan low rank coal dengan menggunakan metode pemanasan tanpa kehadiran oksigenâ€. Jurnal Teknik POMITS, 2, 2., 2013, F-228-F233.

Kirk, R.E. and Othmer, D.F., Encyclopedia of Chemical Technology, 3rd ed.,vol 15-20, The Inter Science Encyclopedia, Inc., New York, 1979.

Kusman, Utomo, M.S.K.T.S., “Simulasi persebaran gas buang dan partikulat dari cerobong asap pada pembangkit listrik tenaga uap (PLTU) di Jepara menggunakan metode computational flid dynamics dengan variasi kecepatan udaraâ€, Jurnal Teknik Mesin S-1,2017, 5, 2, 106-114.

Zhu, Y., Tong, Q.L., Yan, X.X., dan Li, Y.X., “Development of an uncertain Gaussian diffusion model with its application to production-emission system management in coal-dependent city-a case study of Yulinâ€, China. Energy Procedia, 2019, 158, 3253-3258.

Crowl, D.A. dan Louvar J.F., “Chemical process safety fundamentals with application: second edition. New Jersey, Prentice Hall PTR, Inc., 2002.

Apiratikul, R., “Approximation formula for the prediction of downwind distance that found the maximum ground level concentration of air pollution based on the gaussian modelâ€, Jurnal Procedia Social and Behavioral Sciences, 2015, 197, 1257-1262.

Dwi, N.W.S.P., June, T., Yani, M., dan Mujito,â€Estimasi pola dispersi debu, SO2, dan NOxdai industri semen menggunakan model Gauss yang diintegrasi dengan Screen3â€, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, 2018, 8, 1, 109-119.

Zhu, Y., Yan, X., Chen, C., Li, Y., Huang, G., dan Li, Y, “Analysis of industry-air quality control in ecologically fragile coaldependent cities by an uncertain Gaussian diffusion Hurwicz criterion modelâ€, Energy Policy, 2019, 132, 1191-1205.

Ostrycharczyk, M., Krochmalny, K., Czerep, M., dan Kruczek, H.P., “Examinations of the sulfur emission from pulverized lignite fuel, under pyrolysis and oxy-fuel combustion conditionâ€, Fuel, 2019, 241, 579-584.

Amrullah, S., Perdan, I., dan Budiman, A., “Study on Performance and Environmental Impact of Sugarcane-Bagasse Gasification.â€, Mei 2017. [In Joint International Conference on Science and Technology in The Topic (pp. 121-127). Mataram, Indonesia: University of Mataram, University of Malaya, Indonesia].

Gibson, M.D., Kundu, S., Satish, M., “Dispersion model evaluation of PM2.5, NOX and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussianplume air dispersion modelâ€, Atmospheric Pollution Research, 2013, 4, 157-167.

Downloads

Published

2021-01-30