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1. Introduction  

Fuels consist of petroleum fuels and renewable energy. The need for petroleum fuels has 
increased rapidly along with population growth. And the position of renewable energy is still not 
able to shift the position of fuel oil which becomes an energy source and still dominates the 
availability in the world market [1]. Figure 1 shows the estimate consumption world’s energy 
needed. 

 

Fig. 1. Estimation of the world's energy needs according to BP-Energy Outlook 2019 
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 The use of fuel oil from year to year until now has experienced a rapid 
increase, due to increasing population growth in vehicle operations and 
the development of industries that require fuel. The position of 
renewable energy has not been able to shift the position of petroleum 
fuels to the needs of the world market. The RCC unit is secondary 
processing that converts heavy fraction hydrocarbons to light fraction 
hydrocarbons with the help of using catalysts into high-value petroleum 
products such as Naphtha, LPG, and Light Cycle Oil. RCC unit has 
three main parts of the process, namely riser, stripper, and regenerator, 
with the use of the main raw material of residue and using a catalyst. 
This paper aims at reviewing recent journals concerning the catalyst 
applied in the RCC unit. The basis of the RCC unit to be reviewed is 
from an existing RCC unit in Indonesia. The development of research 
on catalysts and regeneration technology in the RCC unit has 
experienced rapid development until now. It is expected that this paper 
can contribute to the future development and application of catalysts for 
the RCC unit, both for national and international levels. 
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Referring to Figure 1, fuels consist of petroleum fuels and renewable energy. The need for fuel 
oil in Indonesia will continue to increase until 2050 with an estimated increase of 40.1% from 4,569 
million BOE [2]. Therefore, to optimize and maximize the production of petroleum fuels, one of 
them is by utilizing residue, which is a by-product into a more valuable petroleum product by using 
the Residue Catalytic Cracking Unit [3]. 

Residue Catalytic Cracking (RCC) is secondary industrial processing that converts heavy 
fraction hydrocarbons to lighter fraction hydrocarbons into more valuable petroleum products. The 
RCC unit consists of three main parts namely riser, stripper, and regenerator. In the RCC process, 
heavy oil experiences direct contact with the catalyst at high temperatures. Then, the output from the 
reactor is further processed in the column to be separated according to the type of oil product based 
on its boiling point, which will produce kind of light oil and heavy oil. Then catalyst after used will 
be fell into the stripper and after this flowed to the top of the regenerator with the aim to reactivate 
the catalyst by removing coke attached to the catalyst surface and regenerated by combustion of 
coke attached to the catalyst [4]. 

Until now the development of residue catalytic cracking technology continues, especially the 
development of catalyst types and regeneration technology. Catalysts used in the RCC process are 
various, but generally use zeolite catalysts [5], synthetic silica-alumina, natural composites or 
aluminosilicates, and silica aluminate [6]. However, most of the commercial catalytic cracking 
processes use catalysts of silica-alumina and zeolite [7]. Then catalyst will be recycling with 
regeneration technology using a regenerator, with the aim to reactivate the catalyst by removing 
coke attached to the catalyst surface [8]. 

2. Thermodynamic Study of Catalytic Cracking Reaction 

In this paper, the thermodynamic study of catalytic cracking reaction is based on an available 
theory of quantum chemical calculation. Quantum chemical calculation. is a method that is generally 
used in the field of chemical research, with high accuracy results for chemical reactions [9]. 
Quantum chemical calculations through Density Functional Theory (DFT) are used to estimate the 
thermodynamic reaction parameters of the refinery oil process, modeling of the structure of catalyst 
materials, investigating the mechanism of substance formation on the catalyst surface and the stage 
of forming transition parts (which describe the adsorption hydrocarbons in different natural 
catalysts) various pore geometries, etc.) [10]. The reference data shows that the value calculated by 
the DFT method is more reliable for the reaction of isoparaffin cracking, isomerization of paraffin, 
olefin, and aromatics cracking, and naphthene dealkylation. The molecular model created in the 
Gauss View software and presented in Figure 2 (as an example of the paraffin hydrocarbon cracking 
reaction).  

 

 

 

paraffin             olefin             paraffin 

Fig. 2. The reaction of paraffin cracking Gauss View 

Table 1 shows the thermodynamic parameters that have the possibility of catalytic cracking 
reactions of thermodynamics according to the results calculated using the DFT method. Paraffin 
reactivity in an endothermic cracking reaction is increased by increasing the molecular weight of n-
paraffin. Paraffin reactivity in an endothermic cracking reaction is increased by increasing the 
molecular weight of n-paraffin. The value of Energy Gibbs change is ΔG = -42.8 kJ/mol for 
cracking C5-C11 paraffin and ΔG = -77.4 kJ/mol for cracking from C14-C40 paraffin. C5-C11+ 
isoparaffin cracking reaction from a thermodynamic point of view (ΔG = -56.7 kJ/mol), then the 
normal hydrocarbon cracking structure is (ΔG = -42.8 kJ/mol). 

The endothermic reaction of dealkylation and cracking of naphthenes is characterized by high 
thermodynamic probabilities (ΔG = -145.5 kJ/mol and ΔG = -186.5 kJ/mol) comparison with 
dealkylation of aromatic hydrocarbons (ΔG = -91.6 kJ/mol). At the same time, the dealkylation of 
aromatic hydrocarbons with less molecular weight (aromatic from the gasoline fraction) is (ΔG = -
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84.0 kJ/mol). The reaction of hydrogen transfers and aromatization (ΔG = -162.0 kJ/mol and ΔG = -
137.0 kJ/mol) possible thermodynamics under process conditions and hydrogen transfer of the 
reaction are written through the next few steps. The aromatic hydrocarbon phase and the formation 
of isoparaffins from olefins and naphthene are the most likely thermodynamic, because of the 
naphthenic structure due to their high aroma [11]. 

Table 1.  Thermodynamic Parameters of Catalytic Cracking Reaction 

Reaction ΔH, kJ/mol ΔG, kJ/mol 

Primary Cracking   

Cracking of n-paraffins C14-C40   

C20H44   n-C10H22 + C10H20 64.2 -77.4 

C20H44   i-C10H22 + C10H20 64.8 -66.4 

Naphthene Dealkylation   

(C10H21)2-C6H4  C6H10 + 2 C10H20 142.4 -145.5 

Aromatic Dealkylation   

(C10H21)2-C6H4  C6H6 + 2 C10H20 155.9 -91.6 

Naphthene Cracking   

(C7H15)2-C10H16  C8H17-C6H5 + 2C10H20 + 2H2 248.3 -186.5 

   

Secondary Cracking   

Cracking of n-paraffins C5–C11+   

n-C6H14  C3H6 + C3H8 76.6 -42.8 

Isomerization of n-paraffin C5–C11+   

n-C7H16  i-C7H16 -1.9 -2.4 

Cracking of Isoparaffin C5–C11+   

i-C6H14  i-C4H8 + C2H6 70.1 -56.7 

Cracking of Olefin C5–C11+   

C7H14  C2H4 + C5H10 93.4 -31.1 

   

Hydrogen Transfer   

C6H10 + C6H12  C6H6 + i-C6H14 -85.5 -38.2 

C6H10 + C6H12 C6H6 + i-C6H14 -169.7 -162.0 

   

Condensation   

C2H3-C6H5 + C8H16  C10H6-(C3H7)2 + 2.H2 -5.0 -77.3 

C2H3-C6H5 + C8H16  C10H6-(C3H7)2 + 2.H2 -28.7 -120.4 

   

Coke   

C10H8  5.C24H12 + 18.H2 114.0 -623.7 

3. Brief Description of RCC Plant Process 

Figure 3 shows the process scheme for the existing RCC units in Indonesia. Referring to Figure 
3, the RCC feeds at stream 1, namely atmospheric residue (AR) and vacuum residue that will be 
contacted to the reactor, using lift steam and lift gas. Cracking reaction occurs in the reactor riser 
with operating conditions 485 °C - 540 °C (900 °F - 1000 °F) and pressures up to 100 psi [6]. 

A stream 2, the catalyst contacts with oil and accelerates the cracking reaction, besides the 
catalyst will provide heat to the hydrocarbons so that it accelerates the cracking reaction that occurs. 
The catalyst and hydrocarbons rise to the top of the riser with the help of a steam elevator and gas 
lift. After the saturation reaction occurs at the top of the riser (reactor) it will produce long-chain 
paraffin, the catalyst must be separated from the hydrocarbons to reduce the thermal cracking 
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process so that the hydrocarbon chains become smaller and eventually will cause the formation of 
coke. The product of the cracking reaction in the form of hydrocarbons will then separate from the 
catalyst and fall into the stripping section. 

A stream 4, the results of the top product in the form of hydrocarbons will go out into the 
fractionation column to be separated. Separating hydrocarbons into overhead vapor, which will 
produce a light fraction fuel in the form of naphtha, LCO, HCO, and DCO, based on its boiling 
point. A stream 5, take advantage of the material to be refluxed and separated again, while stream 6 
will produce a light oil fraction in the form of naphtha [12]. 

A stream 7, the catalyst collected in the stripper will be flowed to the top of the regenerator with 
the aim to reactivate the catalyst by removing coke attached to the catalyst surface and regenerated 
by combustion of coke attached to the catalyst by contacting stream 8 in the form of air. In the upper 
regenerator, partial combustion occurs where the coke will be burned to produce CO to CO2. A 
stream 9, the CO-containing fuel gas exits the upper regenerator through the cyclone to be separated 
from the remnants of the catalyst [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. RCC Plant Unit 

4. The Catalyst of Residue Catalytic Cracking  

One of the challenges in choosing a catalyst is that the metal contained in the feed is 
continuously deposited on the catalyst, causing the deactivation of the catalyst. To prevent 
deactivation, the catalyst must have a high tolerance to deposited metals. Another challenge is the 
high level of coke formed by high boiling residual feeds, so the regenerator must be well designed 
and the catalyst must have high hydrothermal stability and the ability to withstand high regenerator 
temperatures [13]. Therefore, catalysts that have suitable activities, high gasoline selectivity, and 
catalyst stability are very important in this process [14, 15]. The catalyst used is usually in the form 
of microspheres, spheres, and other performed forms [7]. 

The catalyst used in the RCC process generally uses zeolite catalysts [5], synthetic silica-
alumina, natural composites or aluminosilicates, and silica aluminate [6]. But most of the 
commercial catalytic cracking process is carried out using silica alumina and zeolite catalysts type 
[7]. Even so, research on catalysts in the process of catalytic cracking residues continues to grow 
until now such as the development of zeolite catalysts [5, 16], catalysts of metal oxide nanoparticles 
[17], zirconia catalysts impregnated in red mud [18, 19], and rare earth catalyst [20, 21]. Table 2 
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shows the variates of catalysts and feeds for the RCC unit equipped with the operation condition and 
conversion value. 

Table 2.  Residue Catalytic Cracking Catalyst 

Catalyst T P Feed Reactor Conversion Reference 

E-Cat/ZSM-5 650 ˚C N/A Crude Oil 
Fixed-Bed MAT 

Unit 
60.8% [22] 

ZrO2/MaRM 500 ˚C 

Ambeint 

Atmospheric 

Pressure 

Vacuum 

Residue 
Fixed-Bed Reactor 79.6% [19] 

Ni/K 440 ˚C 300 psig 

Deasphalted 

Vacuum 

Residue 

Bench-Scale Pilot 

Plant Equipped with 

an Up-Flow Open 

Tubular 

Reactor 

51.4% [23] 

NiK/MaAl2O3 

500 ˚C N/A 
Vacuum 

Residue 
Fixed-Bed Reactor 

79.37% 

[24] 
NiK/10CexZr1-

xO2-MaAl2O3 
78.66% 

Ni/Activated 

Carbon 
400 ˚C 30,1 MPa 

Oil Sand 

Bitumen 

Batch Auto Clave 

Reactor 
97.7% [25] 

ZrO2/ARM 470 ˚C 3 MPa 
Vacuum 

Residue 

Batch Type 

Autoclave 

Fitted with a Stirrer 

85.2% [18] 

Fe-Char 800 ˚C N/A Oily Sludge 
Two Stage Fixed-

Bed Reactor 
95.8% [26] 

NiK/CeZr-Al 500 ˚C 
Atmospheric 

Pressure 

Vacuum 

Residue 
Fixed-Bed Reactor 88.7% [27] 

USY/ZSM-5 500 ˚C N/A Residue Oil Fixed Fluid Bed 76.11% [28] 

Sandstone based 

drill (Silica 

Alumina) 

420 ˚C 
Atmospheric 

Pressure 

Vacuum 

Residue 
Batch Parr Reactor 

77% 

[29] 
Atmospheric 

Residue 
62% 

Silica 

Alumina/β 

Zeolite 

500 ˚C 0,45 MPa 
Vacuum Gas 

Oil 

Curie Point 

Pyrolyzer 
46% [30] 

Ca/Al 650 ˚C N/A 
Vacuum 

Residue 

Fluidized Bed 

Reactor 
97.4% [31] 

5. Catalyst Regenerator Technology 

Table 3 shows the methods of regeneration process equipped with gas composition. In the 
catalyst regeneration of the RCC process that occurs in the regenerator, the aim is to reactivate the 
catalyst by removing coke attached to the surface of the catalyst, and regenerated by burning coke 
attached to the catalyst [32]. Conventionally, the spent FCC catalyst is reactivated via coke 
combustion in the fluidized bed regenerator. It will generate excessive heat in the system because of 
its high coke yield when treating heavy oil. External catalyst cooler or boiler should be applied to 
extract the heat and maintain the heat balance of the operation, which leads to a great waste of 
carbon resources and high SOx and NOx emissions during coke combustion. On the other hand, 
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hydrogen is usually of great deficiency in the refinery, especially processing heavy oil into light oil 
products [33]. Based on Table 3 about the comparison of output gas composition in regeneration 
technology, the Oxy-Combustion method is profitable in the catalyst regeneration process. The basic 
concept is to use oxygen to burn coke contained in the catalyst which will produce lower emissions, 
and higher efficiency and produces high CO2 flow [34].  The feasibility of an oxy-combustion step 
for the catalyst regeneration has been studied with reference to a spent catalyst due to carbon 
deposition during the methane thermo-catalytic decomposition [35]. 

Table 3.  Gas Composition of Regeneration Process 

Method Gas Composition % Mol Reference 

Oxy – Combustion 

CO2 94.5 

[36, 37] 
O2 3.1 

N2 2.1 

CO 0.01 

Multi-Phase Particle-In-

Cell 

CO2 12 

[38, 39] 
O2 4.4 

N2 75.3 

CO 0.69 

FCC Alliance R2R Resid 

FCC unit 

CO2 7.2 

[40] 
O2 8.6 

N2 74.8 

CO 3.6 

6. Conclusion 

One of fuel processing technology, namely the RCC unit, RCC unit is secondary processing that 
converts heavy fraction hydrocarbons into light fraction hydrocarbons with the help of the use of 
catalysts into high-value petroleum products such as naphtha, LPG, and Light Cycle Oil. The RCC 
unit has three main parts for this process, namely the riser, stripper, and regenerator. Based on the 
review of catalyst development in the RCC unit in this paper, important considerations for choosing 
a catalyst consists of catalysts must have a high tolerance to deposited metals, have high 
hydrothermal stability, suitable activities, high gasoline selectivity, and catalyst stability. Ca/Al type 
Catalyst with Vacuum Residue feed on Fluidized Bed Reactor produces 97.4% conversion. Ca/Al 
type catalyst the most match for RCC unit, cause use feed from vacuum residue and have the high 
conversion although greater than Ni/Activated Carbon. Ni/Activated Carbon Type catalyst with oil 
sand Bitumen Clave feed on Auto Clave Reactor Batch Reactor produces 97.7% conversion. The 
two types of catalysts are suitable for the RCC unit because they have the highest conversion with 
different feeds. 

In addition, regeneration technology should be made based on the comparison of the output gas 
composition, and then the Oxy-Combustion method is profitable in the regeneration process of the 
catalyst because it uses oxygen to burn coke which will produce lower emissions, and higher 
efficiency and produces high CO2 flow 
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